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Virtual Machine (VM) live storage migration is widely performed in the data cen-

ters of the Cloud, for the purposes of load balance, reliability, availability, hardware

maintenance and system upgrade. It entails moving all the state information of the

VM being migrated, including memory state, network state and storage state, from

one physical server to another within the same data center or across different data

centers. To minimize its performance impact, this migration process is required to

be transparent to applications running within the migrating VM, meaning that ap-

plications will keep running inside the VM as if there were no migration operations

at all.

In this dissertation, a thorough literature review is conducted to provide a big

picture of the VM live storage migration process, its problems and existing solutions.

After an in-depth examination, we observe that a severe IO interference between the

VM IO threads and migration IO threads exists and causes both types of the IO

threads to suffer from performance degradation. This interference stems from the

fact that both types of IO threads share the same critical IO path by reading from

and writing to the same shared storage system. Owing to IO resource contention

and requests interference between the two different types of IO requests, not only

will the IO request queue lengthens in the storage system, but the time-consuming

disk seek operations will also become more frequent. Based on this fundamental
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observation, this dissertation research presents three related but orthogonal solutions

that tackle the IO interference problem in order to improve the VM live storage

migration performance.

First, we introduce the Workload-Aware IO Outsourcing scheme, called WAIO, to

improve the VM live storage migration efficiency. Second, we address this problem by

proposing a novel scheme, called SnapMig, to improve the VM live storage migration

efficiency and eliminate its performance impact on user applications at the source

server by effectively leveraging the existing VM snapshots in the backup servers.

Third, we propose the IOFollow scheme to improve both the VM performance and

migration performance simultaneously. Finally, we outline the direction for the future

research work.
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Chapter 1

Introduction

The cloud computing technology is revolutionizing how businesses are conducted in

the Enterprise IT departments [1]. Enterprises rent IT resources from the cloud

providers on an on-demand and pay-as-you-go basis, which brings in numerous bene-

fits ranging from cost savings, to higher level of reliability, availability and scalability.

Netflix, a leading video service company in the world, has shutdown all of its own

data centers and run all the video services in the Amazon AWS cloud platform [2].

In the last quarter of 2014, five of the largest cloud computing providers, including

Amazon, Microsoft, IBM, Google and Salesforce, saw their revenue of the cloud in-

frastructure service surge by between 37% and 96%. Given its total market of only

$16 billion, cloud computing as an industry is still considered in its infancy, since $16

billion is only a tiny fraction of the almost $4 trillion of IT spending for companies

globally [1].

Through the virtualization technology and resource consolidation, as well as the

usage-based billing model, cloud computing is able to provide on-demand access to

computing, data and software utilities as a service that does not impose any con-

straints on the end-user physical locations and system configurations [3]. Cloud

computing has become one of the most important technologies that is poised to

fundamentally change people’s lives and IT ecosystems in the near future. Cloud
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computing’s witnessed success and promising prospect can be attributed in part to

its underlying computing and storage infrastructure: virtual machine (VM).

As one of the most popular products in the cloud computing market, VMs have

been extensively deployed to run different services for customers, such as web service,

mail service, database service and printing service [4]. The underlying hypervisors for

the virtualized environment are responsible for the management of physical devices

and provision of all sorts of virtual devices to VMs. At the same time, hypervisors

are supposed to guarantee the isolation and fairness among different VMs on top of

a single shared physical server, while improving the overall performance for all the

VMs with the accessible physical resources [5].

The VM live migration is a built-in module in modern hypervisors, which can

migrate a running live VM from one physical server to another, either within the

same cluster or across different data centers globally. The primary purpose of VM live

migration is to meet the increasing need for load balancing and server consolidation,

system maintenance and upgrade, VM mobility and manageability in cloud data

centers. This process entails moving the entire state information of a VM being

migrated, which includes the synchronization of CPU states, memory states, network

interfaces of the target VM between the source and the destination of migration, and

VM virtual disk images and snapshots (for reliability and recovery purposes), while

the VM is still executing its workload. At the same time, this process is transparent to

the applications running within the migrating VM and other co-scheduled VMs on the

same physical server. With the advent and wide deployment of the VM-based cloud

computing infrastructure, VM live migration, as an essential functional component of

the hypervisors, like ESX, XEN, QEMU-KVM and HyperV, is becoming more and

more important for several important reasons.

First, the VM live migration feature in hypervisors enables fast and transparent
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workload rescheduling among unevenly utilized physical nodes, for energy efficiency

and efficient utilization of computer server resources. As shown in a recent study by

Gartner Group [6], 61% of the total 518 respondents were conducting server consol-

idation projects currently while 28% were planning server consolidation in the near

future. It is also a known fact that load balancing among hundreds of thousands

of servers is a big concern in data centers [7, 5]. With the support of the VM live

storage migration, the mapping between VMs and the hosting physical servers can be

dynamically adjusted, so that a better level of load-balancing and energy efficiency

can be achieved at the runtime.

Second, due to the increasing requirements for system maintenance and upgrade,

such as replacing defected components, enhancing system performance, and expand-

ing data storage capacity, data servers and storage subsystems are routinely experi-

encing system upgrades [8, 9]. VM live migration can migrate all the running VMs

out of the servers that are to be repaired or upgraded.

Third, each running VM has its own resource requirement at the runtime, e.g.,

the memory footprint, the network bandwidth and the storage throughput. If the

physical server cannot provide such resources to the VM, the VM will be live migrated

to another server that has sufficient resource available.

Fourth, the problem known as vender lock-in forces customers to be dependent on

the providers for cloud services and prevents them from changing to another provider

without substantial switching costs. A flexible and portable VM live migration ap-

proach can play an important role in alleviating the vendor lock-in problem.

Finally, hybrid cloud computing, where VMs run in both private and public cloud

sites and are live migrated back and forth as requested, is growing as the most pop-

ular infrastructure. Nearly half of large enterprises will have deployed hybrid cloud

infrastructure in data centers by the end of 2017 [10]. VM live migration becomes
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critical to a wider acceptance and deployment of hybrid clouds. In a typical cloud

infrastructure, data storage can be either shared or distributed depending on whether

the data are stored in a centralized environment, where all servers share the phys-

ical storage, or distributed (share-nothing) environment, where each server has its

own dedicated storage. In the shared-storage environment, VM live migration only

involves the synchronization of CPU states, memory states and network interfaces of

the target VM between the source and the destination of migration. VM virtual disk

images remain in the shared-storage that is accessible from both the source and the

destination. With the growing trend of shared-nothing architectures in cloud data

centers and the need for VM live migration across different clouds over WAN, it is in-

creasingly important to consider VM live migration in a distributed, or share-nothing

storage environment, where VM live storage migration must also migrates the state of

VM virtual disk images and snapshots from the source to the destination. In fact, VM

live storage migration has become an integral part of VM live migration in modern

hypervisors [11, 12, 13].

It is for these reasons, this dissertation focuses on VM live migration in a dis-

tributed storage environment, namely, VM live storage migration. Figure 1.1 shows

an example system of the vMotion System from the VMware company. As the run-

ning VM is migrating from one node to another, both the VM’s in-memory states and

virtual disk images are migrating from the source server to the destination server.

1.1 Challenges in the VM Live Storage Migration

Given that the capacity of the VM virtual storage, which includes the VM’s virtual

disk images and snapshots, is much larger than that of other VM state information,

such as memory state, CPU state and network state, it is crucial to improve the
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Figure 1.1: The VMware vSphere vMotion System

performance of VM live storage migration. To be specific, any sound and desirable

VM live storage migration scheme must posses the following properties:

• Short Migration Time: In modern data centers, VMs are running 7×24 hours to

serve customers globally. The time window for the system maintenance and upgrade

is short, so that it is crucial to live migrate a VM quickly. However, the size of a

VM’s storage image is commonly several to tens of GBs and it may take minutes

or even hours to complete a VM live storage migration, which is likely to curtail

the capabilities of system management in the cloud data centers. For instance,

in one use case from Aliyun [14], the largest cloud service provider by Alibaba in
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China, each VM has about 40GB of storage usage and each server holds 25 VMs

on average. Assume that every VM evenly shares the 10Gbps network bandwidth

attached to a single physical server, from the network’s perspective, it still needs

about 13 minutes transmit the data required of a single VM live migration. In

addition, these VM images share the same storage resource, so that each VM can

only obtain a fraction of the total storage bandwidth within the physical server.

The limited storage bandwidth is further shared by two types of IO threads: the

VM IO threads serving the application and the migration IO threads carrying out

VM live migration. Considering that these two types of IO threads interference with

each other significantly as they share the same limited resources, the real storage

throughput for the migration thread is much smaller than the network bandwidth.

Moreover, new updates induced by the VM IO thread during the migration process

also need to be migrated to the destination server, which will further lengthen the

migration time. Therefore, efficient and effective migration approaches are desired

to speed up the VM live storage migration.

• High VM IO Performance: The IO performance within running VMs must

comply with the Service Level Agreement (SLA) all the time. During the VM live

storage migration, applications within the migrating VM are still running and they

should be oblivious of the migration process. However, the available storage resource

is severely stretched due to the additional resource hungry migration threads. In

one of our experiments, the VM IO throughput drops from 94.59 MB/s to 65.80

MB/s. If the migration thread consumes the storage resource aggressively, the

IO performance of the migrating VM is substantially reduced, thus violating the

predefined SLA. In the extreme case, the VM will be stalled and applications cannot

run at all. At the same time, the co-located VMs, which reside in the same physical

server and assume the same importance as the migrating VM, are also subject to
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the reduced storage resource and degraded IO performance. Therefore, the cloud

service provider should provide the same performance guarantee for all the co-

located, concurrently running VMs in the physical server.

• Capability to Migrate Multiple VMs Simultaneously: Given the wide de-

ployment of VMs in the data centers, it is common to migrate multiple VMs out of

a single server, or migrate multiple VMs into a single server. For the best resource

utilization, the mapping from VMs to physical servers should be dynamically ad-

justed, according to the VM’s workload characteristics and priorities [15]. In such

cases, multiple resource hungry migration threads will be introduced to the physi-

cal server, whose overall storage resource remains unchanged during the migration

period. This leads to the available storage resource for a single VM to fall sharply.

Therefore, it’s much more challenging to achieve acceptable VM IO performance

for all the running VMs, while migrating multiple VMs to their destinations at

reasonable migration speed.

• Capability to Migrate Multiple VM Snapshots: As indicated previously,

VM snapshots are extensively employed to recover the VM from system crash and

data loss, but it comes at a cost. The VM snapshots also need to be migrated to

the destination, besides the virtual disk images and other VM state information, in

the VM live storage migration. More importantly, the size of each VM snapshot is

not negligible and varies significantly, and it largely depends on the write traffic to

the running VM. Take the Aliyun cluster use case [14] as an example, the size of

each VM is 40GB, and each VM snapshot is 8GB on average, which means 20% of

the virtual disk images have been changed since the last snapshot. Therefore, VM

snapshots will further deteriorate the VM live storage migration performance.

A number of approaches have been proposed to improve the live storage migration
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performance, including optimizing the data block transmission sequence [12] and the

migration workflow [11], reducing redundant data transmission [16], and leveraging

heterogeneous storage devices [17]. After an in-depth examination, we find that all

these approaches fail to address the vital problem of IO interference between the VM

IO process and migration IO process, because both types of IO processes share the

same critical IO path by reading from/writing to the same shared storage device.

Owing to IO resource contention and requests interference between the two different

types of IOs, not only will the IO request queue lengthens in the disk, but the time-

consuming disk seek operations will also become more frequent. As a result, the

performance of the VM IO process will be seriously degraded. Our experimental

results show that the VM IO throughput decreases by a factor of up to 6.42 (see

Section 3.1.1).

1.2 Contributions of the Dissertation

By addressing the aforementioned problems, we strive to make the following contri-

butions in this dissertation:

• WAIO: In Chapter 3, a Workload-Aware IO Outsourcing (WAIO) framework is

proposed to improve both the VM IO performance and migration performance

during the live storage migration. The main idea is to temporarily capture the

working set of the target VM and outsource this working set data to a surrogate

device during the migration period. By doing so, the VM IO process can access

the surrogate device during migration, while the migration IO process accesses the

original disk most of the time. As a result, the IO interference between both types

of IO processes can be reduced significantly and the overall live storage migration

performance can be improved. The surrogate device can be a spare SSD, a spare



www.manaraa.com

9

hard drive (HDD) or available space in another storage node. This framework is

orthogonal to existing optimization approaches, including the DBT [12] and IO

Mirroring [11] approaches, and it is a performance booster layer for most, if not all,

VM live migration schemes. Further, this framework can also be used to improve the

performance of other VM tasks such as VM replication [18], since these tasks will

encounter the same IO interference problem as VM live storage migration does. The

empirical evaluation of our prototyped system shows that our WAIO framework can

improve the VM IO performance by up to 11.83 times, compared with the DBT

approach. On the other hand, our system can migrate a VM in a higher speed,

without sacrificing the VM IO performance significantly.

• SnapMig: Motivated by the observation of the VM snapshots-backup process and

its resulting snapshots of VM state information available in the backup servers, we

propose a novel VM live storage migration scheme, called SnapMig, to improve both

the VM performance and migration performance simultaneously in Chapter 4. By

leveraging the backup servers to transfer migrating VMs’ base images and previous

snapshots, the source servers only need to migrate the latest VM state changes to

the destination servers. Consequently, the otherwise severe interference between

the I/O traffic generated by the user applications within the VMs (including the

migrating VMs) in source servers and the I/O traffic induced by the VM migration

process is significantly reduced, leading to substantial performance improvements

to both the VM threads and migration threads. In addition, after the migration, re-

cent VM snapshots made available in the destination servers by the backup servers

allow the users to roll back their VMs to previous states freely. Moreover, SnapMig

is orthogonal to existing migration approaches, and it is regarded as a performance

optimization layer for the existing migration approaches. Finally, we observe that
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the performance advantages of SnapMig become more pronounced with the concur-

rent live storage migrations of multiple VMs.

• IOFollow: In Chapter 5, we present the IOFollow system that is designed to boost

the VM live storage migration performance. Motivated by the fact that the order of

the blocks being migrated, sequential or random, does not impact the performance

significantly because the migrating VM’s virtual disks can not be recontructed until

all the data blocks are available in the destination server, while the order of the

VM IO requests does since each IO request is consumed by applications in the

runtime, the IOFollow system schedules the block migration sequence according

to the VM IO requests, so that the time-consuming disk head movements can be

reduced significantly. In addition, by selectively caching data blocks from migration

threads, incoming VM IO requests can be served in the memory, thus minimizing the

number of memory accesses at the same time. In this way, both VM IO performance

and migration performance can be improved significantly. Our experimental results

show that the performance improvement is much more compelling in the multiple

concurrent VM migration scenarios.

1.3 Organization of the Thesis

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the

relevant background about VM live storage migration systems and algorithms. From

Chapter 3 to Chapter 5, we present our solutions to solve the problems of VM live

storage migration identified in Chapter 1. Chapter 6 and 7 explore the future research

work and conclude the dissertation.
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Chapter 2

Related Work

In this chapter, we introduce the basics of VM live migration, the prevailing VM

migration schemes addressing various issues, of which some represent the state of the

art, and their key features.

2.1 Live Memory State Migration

Virtual Machine (VM) migration, in principle, is the transferring of the CPU state,

memory state, device state, network state, storage state, and other states of VMs from

one physical node to another over LAN or WAN [19, 20]. One straightforward way to

perform a VM migration operation is to suspend a VM at the source, then transfer

the VM states, and finally resume the VM at the destination. The advantage of this

approach is simple and easy to implement. However, it needs to interrupt the running

OS and applications in the VM, whose long downtime is intolerable for applications

on non-stop services. Therefore, VM live migration, which migrates VMs on the fly,

becomes an imperative feature of virtual machine monitors (VMM) and most, if not

all, modern VMMs support VM live migration. Among the transfers of various VM

states, that of VM’s memory state usually takes a major portion of the migration

time and a number of approaches have been proposed to accelerate the live memory

state migration [21, 22].
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In general, memory migration approaches can be classified into two categories:

pre-copy memory migration and post-copy memory migration. Pre-copy memory

migration copies all the memory pages from the source to the destination. Because

many memory pages can be modified by OS and applications during the transfer,

re-transfers of modified (dirty) pages are required until the retransfer rate is equal to

or higher than the modifying rate. Once this point is reached, VMM will suspend the

VM on the source node, transfer the remaining dirty pages, and resume the VM on

the destination node. The downtime ranges from milliseconds to seconds depending

on the amount of dirty memory pages. In post-copy memory migration, in contrast,

the VMM suspends the VM on the source node, transfers a minimal subset of the VM

states (e.g., the CPU state, device state, and network state), resumes the VM on the

destination node although most of the memory state still resides on the source node.

Then a background copying process is initiated to transfer the remaining memory

pages from the source to the destination. When the VM tries to access pages that

have not been transferred, page faults will be generated and trapped by VMM on the

destination node, and redirected to the source node over the network. Comparing

with pre-copy memory migration, post-copy memory migration has a much shorter

downtime while significantly degrading the performance of user applications during

migration. The pre+post copy memory migration aims to strike a balance between

user performance and downtime. In Pre+post copy memory migration, upon the

completion of the transfer of the original memory state, the VMM suspends the VM

at the source and resumes it at the destination[23, 12].

Since the access latency of persistent storage systems is still several orders of

magnitude slower than that of volatile memory chips, modern operating systems

aggressively cache data from the storage system in memory in order to hide the long

access latency. Therefore, there is a large portion of data cached in memory with a
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duplicated copy in the storage system. Changyeon et al. [24] have observed that the

amount of data duplication between memory and storage device is higher than 55% or

2.2 GB of data in a Linux server. When it comes to VM live migration, it is not only

time consuming but also unnecessary to transfer these duplicated memory pages from

the source server to the destination server. Based on this observation, they propose

to track the duplicated memory pages in the source server at the runtime. When

migrating, instead of migrating these duplicate pages over the rate-limited connection

to the destination, the destination server directly fetches these pages from the shared

storage server. Therefore, the total data transmission is reduced significantly, and

the live migration performance is improved as well [24, 25].

Hai et al. [26] propose to classify memory pages into several types according to

different characteristics, such as high word similarity, low word similarity, a large

number of zero bytes, and then adopt different compression algorithms to compress

memory pages with different properties. As a result, a better tradeoff of computa-

tion and compression ratio can be achieved. Because of the smaller amount of data

transmission and low compression overhead in the live migration period, the total

migration time and downtime are both significantly decreased.

Petter et al. [27] propose to employ a delta compression algorithm to improve

the VM live migration performance, e.g., shortening total migration time and VM

downtime. In this approach, a delta memory page is computed for each dirty page,

and then the delta page is compressed and migrated to the destination server, rather

than the corresponding raw memory page. In the destination server, the raw memory

page can be reversed from the delta page and the previous copy. As there are lots

of zero bits in the delta page, it is much easier and more efficient to compress delta

pages than raw memory pages. Therefore, the total data transmission during the VM

live process is largely reduced [27].
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Haikun et al. [28] design a new live VM migration scheme based on checking-

pointing/recovery and trace/replay techniques. Execution trace files are generated in

the source node, which contains enough information to replay a long-term execution

of the VM instruction-by-instruction. By iteratively transferring trace files from the

source node to the destination node, all the VM state information will be synchro-

nized in the destination server. Due to the smaller size of trace files, compared with

dirty memory pages, VM migration downtime and network bandwidth consumption

is greatly diminished.

Michael et al. [29] design and implement a post-copy based VM live migration

scheme in the XEN hypervisor. In their implementation, adaptive pre-paging and

dynamic self-ballooning are adopted to reduce the total migration time and VM down-

time in the VM live migration. With adaptive pre-paging, VMs’ memory working set

can be analyzed by the sequence of previous memory page requests, so that memory

pages can be proactively pushed to the destination server before VMs issue the access

requests on them. Under the dynamic self-ballooning scheme, the VM can return the

free memory pages to the underlying hypervisor before the VM live migration starts.

Therefore, the total memory footprint of the migrating VM is significantly reduced.

Kai-Yuan et al. [30] argues that the VM live migration can be improved by ex-

ploiting the application’s assistant. For instance, many Java applications are running

within VMs and there are plenty of dirty pages waiting for the Garbage Collection of

JVM to reclaim. The removal of these dirty pages from the VM live migration process

will not only speed up the VM live migration process, but also have no impact on the

applications themselves. The experimental results show that the completion time,

network traffic of transferring memory pages and application downtime, all improved

by up to 90%, compared with conventional VM live migration scheme.

In the virtualized environment, physical memory pages are under the control of
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hypervisors, which then provide individual VMs with virtual memory pages as re-

quested. All the virtual memory pages that are allocated to and not used by VMs

reside in the free memory pool. The content of these free memory pages is irrelevant

to the VM, so that they can be treated as zero pages. The VM live migration per-

formance will be improved significantly if these free pages within migrating VMs can

be detected and removed from the live migration process. Jui-Hao et al. [31] design

a novel introspection scheme that can effectively identify the free memory pool with-

out the byte comparing of memory pages. With such Virtual Machine Introspection

scheme, both the VM live migration and VM memory deduplication can be improved

significantly.

PMigrate [32] is a framework that aims at parallelizing VM live migration, as the

increasing amount of resources allocated to individual VMs also offers opportunities

to leverage such resource for parallelization in the VM live migration. Not only can

the dozens of vCPUs, but also the dozens of NIC ports can be leveraged to migrate

the VM’s state information. In addition, they design a dynamic fine-grained lock

abstraction, the range lock, to increase the parallelism of concurrent mutation in a

shared memory address space.

Senthil et al. [23] analyze four popular optimization techniques for VM live mi-

gration, including Delta Compression, Page Skip, Subpage deduplication and Data

Compression. They demonstrate that the performance gain of any optimization tech-

nique is closely related to the application’s characteristics, by conducting VM live

migration experiments with different optimization techniques and different applica-

tions. Furthermore, several guidelines have been provided in the selection of suit-

able optimization technique and the possible combination of different optimization

schemes.

Enlighted Post-Copy [33] is an optimization scheme for the VM live migration,
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which exploits the VM’s runtime information as enlightenment during the VM live

migration process. Prior to the VM live migration, the enlightenment information

that contains the VM’s runtime information, such as the VM’s working set and free

pages, is passed to the hypervisor. After the VM is resumed at the destination

server, memory pages within the VM’s working set are transferred to the destination

server first. At the same time, memory pages that belong to the free pool of the

VM are discarded in the source server. Therefore, the total migration time is reduced

significantly and the running VM’s performance is improved as less page fault occurred

in the destination server.

SRVM [34] is a hypervisor support mechanism for VM live migration with pass-

through SR-IOV network devices. SR-IOV pass-through can provide much better

VM performance compared with para-virtualization schemes. However it introduces

challenges for the VM live migration, as hypervisors cannot freely save/restore pass-

through devices like para-virtualization devices. SRVM solves these challenges by

providing hypervisors support for tracking dirty memory pages and provisioning VFs

after VM live migration. At the same time, it does not require any modifications in

guest OS or driver. With the SRVM scheme, the virtualization system can gain both

high VM performance (by SR-IOV device) and flexible VM live migration capability

(with SRVM support) at the same time.

All the research works above improve the VM migration for different scenarios. For

instance, Kai’s approach [30] can only applicable to the VMs that are running Java

Applications inside. Meanwhile, they are different from our migration approaches

(WAIO, SnapMig and IOFollow), as they focus on main memory layer of the VM live

migration with the shared storage, while our approaches are mainly improving the

VM live storage migration in the storage layer without shared storage. However, they

provide us with a big picture of the state-of-the-art research works and inspire us to
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design new solutions to improve the VM live storage migration performance.

2.2 Live Storage State migration

In a typical VM live migration process in the non-shared storage environment, the

transferring of memory state and virtual disk images accounts for the most of the

migration time and the network bandwidth consumed. Because migrating the virtual

disk images usually takes much longer time than migrating the memory state, the

research problem of how to deliver an effective and efficient VM live storage migration

has attracted a great deal of attention from academia and industry [35, 36, 37].

In the early generation of VMware vSphere vMotion [11], the Snapshot scheme

leverages the virtual machine snapshots and iteratively consolidates a series of snap-

shots from the source to the destination. Each snapshot not only preserves the VM’s

power state, like powered-on, powered-off or suspended, but also contains all the files

that make up this VM, including virtual disks, memory footprint, virtual network in-

terface and other devices [38]. Along soon as the size of the last snapshot drops blew

a predefined threshold, the iteration is stopped; the VM is suspended in the source,

and then resumed in the destination. Due to the performance and consistency issue,

this scheme is rarely used in current systems. Different from Snapshot, vMotion’s

DBT(Dirty Block Tracking) [11] performs updates in place, instead of logging writes

in a snapshot file, and uses a dirty block table to keep track of the writes during the

last iteration of storage migration. Both Snapshot and DBT share a major problem:

the downtime between the suspension and resumption of the VM can be relatively

long under write-intensive workloads. To address this problem, IO Mirroring [11] is

proposed to mirror every write request to both the source and destination nodes dur-

ing the live migration. In the background, the virtual disk images of the VM(except
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the data in the new write requests) are being migrated to the destination. Once this

migration is done, the virtual disk images in the source node are identical automat-

ically to those in the destination node, since all the data in the new write requests

have already been mirrored to the destination. Therefore, when the VM is suspended

in the source, only the VM’s memory state and other states need to be transferred to

the destination before the resume of VM in the destination node. IO Mirroring de-

creases the downtime significantly at the expense of the increased network traffic(the

mirroring of every write request).

Luo et al. [39] propose a three-phase migration algorithm that provides minimal

downtime and keep the system consistency. Also, they present an incremental migra-

tion scheme to facilitate the migration back to the source node. The evaluation result

shows that the downtime of this algorithm is around 100 milliseconds, close to the

the migration in shard storage environment. The migration time is reduced largely

by avoiding the unnecessary data transmission as well. However, the reduction of

migration time can be achieved only when the VM is going to migrate back to the

server that holds the VM’s previous virtual disk images.

In order to avoid unnecessary retransfer of frequently-updated blocks during iter-

ations of dirty block transfers, Zheng et al. [12] proposed a scheme that distinguishes

frequently-updated areas from infrequently-updated areas, and transfers infrequently-

updated data blocks prior to frequently-updated data blocks. By doing so, the mi-

grated data blocks will be less likely to become dirty and request a re-transmission

before the completion of VM live migration. Therefore, both the total amount of data

transferred and the migration time is decreased significantly. However, this scheme

can not improve the VM IO performance during the live migration. The VM IO

process accesses the popular region of the virtual disk images; while the migration IO

process accesses the unpopular region of the virtual disk images. Therefore, the disk
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head has to seek back and forth, thus of significantly IO performance drop during the

migration.

Shrinker [16] is a distributed system that is capable of migrating a virtual cluster

over WAN. It has two built-in services: Coordination Service (in the source site) and

Indexing Service (in the destination site). The Coordination Service tracks the hash

values of memory pages and virtual disk blocks that have already been transferred

to the destination site, so that hypervisors in the source side can perform data dedu-

plication by replacing duplicated transmission of memory pages and disk blocks with

their hash values of them. The Indexing Service records the hash values and the

location information of the memory pages and disk blocks in the destination side.

Hypervisors in the destination can reconstruct the VM’s memory and virtual disk

images with the communication between Indexing Service and other hypervisors that

hold the real data. As a result, the total data transmission and migration time is re-

duced substantially. This scheme can reduce the redundant data transmission, rather

than the the amount of data read from the disk. Every data block in the virtual

disk images is read into the memory, and then the fingerprint is calculated. Based

on the fingerprint, Shrinker can decide whether to transfer the data block or its fin-

gerprint. Therefore, the IO interference between VM IO requests and migration IO

requests still exists in the disk. In addition, this scheme increases the computation

overhead(generating fingerprint for each data block).

Zhou et al. [17] take the speed discrepancy between HDDs and SSDs, and the wear-

out issue of SSDs into consideration in order to optimize the live storage migration.

They propose the three optimizations of 1) low redundancy storage migration designed

to reduce the total data transmission; 2) improving the VM IO performance when

migrating a VM from SSDs to HDDs by leveraging SSDs higher performance and

the Source-based Low Redundancy Storage Migration; and 3) an asynchronous IO
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Mirroring mechanism to significantly reduce the IO response time for each request

in the running VM during the migration. In the WAN environment, the VM IO

performance will degrade since the VM needs to fetch the latest updates form the

destination server(across WAN), that is usually much slower than that in the LAN

environment.

Ali et al. [40] build a VM live storage migration system, called XvMotion, to mi-

grate VM over long distances across heterogeneous systems, with performance similar

to that of VM migration in Local Area Network. In order to achieve this goal, they

proposed several techniques and optimizations, including streams transport frame-

work, asynchronous IO mirroring, memory and disk coordination, stun during page

send and so on.

Eventually, the performance of the storage system in the virtualized environment

plays a vital role for the VM live storage migration performance. Many other research

works also indirectly improve the VM live storage migration performance by the

contributions in IO scheduler [41, 42], file systems [43, 44, 45], Solid State Drives [46,

47, 48] and data deduplication techniques [49, 50].

In the VM live migration, the VM is running applications most of the time(except

the downtime window), so the IO performance of the running VM is critical in the

cloud environment. All the schemes mentioned above mainly focus on the reduction

of total data transmission, migration time and VM downtime, but fail to improve

the VM’s IO performance. The goal of this dissertation is to improve the VM IO

performance and the migration performance during the VM live storage migration,

by addressing the IO-interference problem.

In principle, Our schemes share the same goal as previous research works, which

is to speed up the VM live storage migration performance and provide reasonable IO

performance for the migrating VM. However, they achieve this goal through different
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ways. Our schemes try to minimize the serious IO interference problem by leveraging

the existing idle base images and previous snapshots in backup servers, outsourcing

the VM’s working set to surrogate storage device and scheduling the migration se-

quence. Previous research works focus on the performance optimization techniques

of the aggregate IO streams in the source server, such as leveraging the fast read per-

formance of SSD, removing the redundant data transmission and so on. Our schemes

can be combined with these research works together to achieve better VM live storage

migration performance.

2.3 Live Multiple Concurrent Migrations

Given the widely deployment of VMs in current cloud data centers, it’s not uncom-

mon to migrate multiple VMs from/to a single server simultaneously. The resources

contention between migrating threads and VM threads surges as the number of VM

involved in the migration process at the same time, so that it’s more challenging to

perform multiple VM migrations fast and guarantee the SLA for all customer applica-

tions. A number of research works have been targeting this problem and we highlight

several representative research work as follows:

VMScatter [51] is a multicast-based VM live migration system, which can effi-

ciently migrate a group of VMs from one shared source server to multiple destination

servers. Given that there are plenty of identical memory pages across VMs [52, 53],

VMScatter can transfer these identical pages to many different servers simultaneously

in a single transmission from the source host, instead of transferring each page to each

destination server individually. All the unique or dirty pages will be unicasted to the

related server separately. Therefore, both the total data transmission and network

traffic will be reduced significantly.
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Timothy et al. [15] argue that manually-initiated VM live migration holds sev-

eral disadvantages: 1) lack the agility to response to the sudden workload changes

or hotspots; 2) is error-prone in the decision of new mapping from VMs to physical

servers, since there are many factors involved, such as CPU, memory and network

for each application and each physical server. They design and implement the Sand-

piper system that contains two components: hotspot detection algorithm and hotspot

migration algorithm. The hotspot detection algorithm will decide when to migrate

VMs, while the hotspot migration algorithm will determine where to migrate and how

much resources to allocate after the migration. In addition, black-box and gray-box

strategies are proposed to identify hotspots in the virtualized system.

Live Gang Migration [52] is inspired by the fact that co-located VMs often have

many identical memory pages, such as the same operating systems, same applica-

tions and libraries, same Java Virtual Machines. Existing migration approaches will

transfer these duplicated memory pages for every VM involving in the live migration

process, which not only slow down the migration process, but waste the previous

network resources. In the live gang migration approach, identical memory pages will

be identified and duplicated prior to the transmission of VM state, so that only a

single memory page copy needs to be migrated. They also exploit the benefits of

different granularities for the identical pages detection algorithm, like whole memory

pages and subpages.

Tao et al. [54] identify the synchronization problem in the multiple VM migra-

tion scenarios. Given that many applications are deployed in multiple VMs with

different purposes. For instance, one VM run the web server and the other one run

database server. From the performance perspective, these VMs should reside in the

same server; otherwise, they will encounter heavy communication overhead within

application logics. In the migration of co-located VMs, it is crucially to coordinate



www.manaraa.com

23

their migration process so that these VMs will reside in the same physical server.

Jie et al. [13, 55] investigate the live migration of multi-tier applications, and they

indicate that the coordination of multiple VM migration plays a crucial role for the

overall performance of user applications. Suppose a user application consists of three

VMs: web server VM, application server VM and database VM. All these three VMs

reside in the same physical server, and need to migrate to another server, due to

system maintenance or load balancing requirement. There would be a high network

latency that will drag down the overall application performance, if any one or two

VMs have reached the destination server, while the other ones are still running in the

source server. In order to solve this problem, they design the COMMA system that

coordinate the migration progresses based on the communication impact among VMs,

so that the migration impact on multi-tier applications’ performance is effectively

minimized.

Solely Relying on the approaches above can not provide the satisfiable VM live

storage migration performance, as the core IO interference problem is not addressed

sufficiently by the existing approaches. Our WAIO, SnapMig and IOFollow are de-

signed to tackle this interference from the beginning and minimize this interference

from different perspectives. They are orthogonal to the existing solutions, so that they

can be combined with previous approaches to further improve the VM live storage

migration.
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Chapter 3

WAIO: Workload-Aware IO Outsourcing Live Storage Migration

3.1 Background and Motivation

As introduced in Chapter 2, there are many approaches to optimize the VM live

storage migration [11, 38, 11, 11, 39, 12, 16, 17, 40]. After an in-depth examination,

we find that all these approaches fail to address the vital problem of IO interference

between the VM IO process and migration IO process, because both types of IO

processes share the same critical IO path by reading from/writing to the same shared

storage device. Owing to IO resource contention and requests interference between

the two different types of IOs, not only will the IO request queue lengthens in the

disk, but the time-consuming disk seek operations will also become more frequent.

As a result, the performance of the VM IO process will be noticeably degraded. Our

experimental results show that the VM IO throughput decreases by a factor of up to

6.42 (see Section 3.1.1).

In this work, we propose a Workload-Aware IO Outsourcing (WAIO) framework

to improve both the VM IO performance and migration performance during the live

storage migration. The main idea is to temporarily capture the working set of the

target VM and outsource this working set data to a surrogate device during the mi-

gration period. By doing so, the VM IO process can access the surrogate device

during migration, while the migration IO process access the original disk most of
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the time. As a result, the IO interference between both types of IO processes can

be reduced significantly and the overall live storage migration performance can be

improved. The surrogate device can be a spare SSD, a spare hard drive (HDD) or

available space in another storage node. This framework is orthogonal to existing

optimization approaches, including the DBT [12] and IO Mirroring [11] approaches,

and it is a performance boost layer for most, if not all, VM live migration schemes.

Further, this framework can also be used to improve the performance of other VM

tasks such as VM replication [18], since these tasks will encounter the same IO in-

terference problem as VM live storage migration does. The empirical evaluation of

our prototyped system shows that our WAIO framework can improve the VM IO

performance by up to 11.83 times, compared with the DBT approach. On the other

hand, our system can migrate a VM in a higher speed, without sacrificing the VM

IO performance significantly.

Both our WAIO and Zheng et al.’ work [12] exploit the application’s IO access

characteristics, but they improve the VM live migration performance in different ways.

Zheng’s scheme aims to reduce the total amount of data transferred significantly, by

exploiting the VM’s workload locality. Through the analysis of the workload locality,

infrequently updated data blocks are distinguished from frequently updated data

blocks in virtual disk images. The infrequently updated data blocks are transferred

prior to frequently updated data blocks in the migration, so that the re-transmissions

of data blocks are minimized, thus reducing total amount of data transmission. While

WAIO also exploits the workload locality, its methodology is completely different

from Zheng’s. WAIO makes use of workload locality to capture and outsource the

VM’s working set to a surrogate device during the migration, which does not affect

the transmission sequence of data blocks. Importantly, WAIO is orthogonal and

complementary to the above approaches and can further improve these techniques.
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Table 3.1 briefly compares WAIO with the above approaches.

Table 3.1: Comparison between WAIO and The state-of-the-art schemes

Features DBT IO Mirroring Zheng[6] WAIO
Migration Time

Reduction
X X X X

VM IO
Performance

X

Workload Locality X X

3.1.1 IO Interference Problem

As aforementioned, we hypothesize that the IO interference between migration IOs

and VM IOs is the root cause of slow migration speed and VM IO performance

degradation. On one hand, the VM migration process reads data blocks from the

virtual disk images at the source and writes them to the virtual disk images at the

destination. On the other hand, VM IOs are serviced by hypervisors and directed

to the virtual disk images at the source. Two concurrent but independent streams

of IOs result in a contention of the hard disk head at the source, since only one

disk head can perform an IO operation at any given time. Not only do the seek

operations of the disk head become more frequent, but the queue of IO requests also

gets longer. Therefore, it is difficult to achieve a better VM IO performance and

shorter migration time simultaneously during the VM live storage migration. This

IO interference problem clearly remains in the existing approaches, because of the

co-existence of VM IOs and migration IOs at the source [56].

Table 3.2: VM IO performance during the migration

Throughput (MB/s) Sequential IOs Random IOs
No Migration 58.44 5.46

Live Migration 19.43 0.85
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In order to validate our hypothesis, we conduct experiments on the QEMU-KVM

system in a LAN environment. A running VM is migrated back and forth between

two servers over a 1Gbps Ethernet. The IO requests are generated by IOMeter [57]

with 60%/40% read/write requests, in a Windows XP VM of 15GB. The size of

each sequential request is 32KB, while that of each random request is 4KB. The

migration speed is 20.8MB/s. Table 3.2 shows the VM IO performance degradation

during live storage migration. As indicated in this table, the throughput decreases

by a factor of 3.01 for sequential requests and 6.42 for random requests during the

live migration, compared to the scenarios without migration. Such a significant IO

performance degradation can potentially cause the running applications inside the

VM to be suspended, thus violating SLA. Table 3.3 shows the migration performance

under different migration speeds. In this experiment, we evaluate the performance

of sequential IO requests under different migration speeds. The migration speed is

set through the QEMU-KVM system. As shown in this table, by setting a higher

migration speed of 40.14MB/s, the total migration time is reduced to 25.5% of that

under the lower speed of 10.26MB/s, while the VM performance is degraded by a

factor of 4.55. Clearly, given the limited resources (e.g., storage bandwidth) and IO

interference, there is a tradeoff between the migration and VM performances and one

or another must give.

Table 3.3: VM IO performance under different migration speed

Migration Speed (MB/s) 10.26 40.14
VM IO Throughput (MB/s) 42.25 9.29

Migration time (s) 1498 382
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3.1.2 Feasibility Analysis of IO Outsourcing

In order to alleviate the IO interference problem, one possible solution is to “out-

source” VM IOs so that migration IOs can occupy the disk head and perform sequen-

tial read operations if possible. This point is also consistent with the known fact that

the offline storage migration approach (with no external IO requests) is much faster

than its live counterpart (with concurrent external and internal IO requests). Before

we can leverage the IO outsourcing to optimize VM live storage migration, there are

two key questions to answer: What IOs to outsource and where to outsource.

To answer the first question, we need to take workload characteristics into consid-

erations [58, 59]. First, reads must be synchronous while writes can be asynchronous.

This means that if writes can be accommodated by a surrogate storage device for

IO outsourcing, the completion of a write can be immediately returned to the user

without any interference to the virtual disk images. Second, a read may access the

storage medium of the virtual disk image and cause a difficulty of IO outsourcing.

Fortunately, previous studies indicate that access locality is one of the key web work-

load characteristics and observe that 10% of files accessed on a web server account

for approximately 90% of the requests and 90% of the bytes transferred [60]. In the

virtualized environment, the IO requests of virtual disks also have strong temporal

and spatial locality. For instance, another study [12] indicates that, in a file server,

72% of the blocks that are read during the migration process were also read before

the start of the migration. Among these blocks, 96% are read for more than three

times during migration. Strong spatial locality is also confirmed in this study. Based

on the strong locality of IO requests, the working set of the migrated VM is expected

to be reasonably small, so that it is viable to outsource the popular read requests and

all the writes to the surrogate device.
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To answer the second question, we recognize and leverage the ubiquitous spare/free

storage resources in data centers. In the cloud environment, a temporary virtual disk

can serve to hold the VM’s working set, as long as this temporary virtual disk does

not compete for the storage bandwidth with the original virtual disks. The placement

of the temporary virtual disk is quite flexible, including hard disks, SSDs or RAIDs.

In case there is no spare device, free storage space on the storage systems under light

loads can also hold the temporary virtual disk.

3.2 System Design and Implementation

In this section, we first present the architecture overview of the WAIO system, and

then we introduce the algorithm of WAIO in details. The data consistency issue of

WAIO is discussed at the end of this section.

3.2.1 WAIO Architecture

Figure 3.1 shows the architecture overview of the WAIO system. WAIO is an aug-

mented module in the IO stack layer of hypervisors, and it includes five functional

modules: Popular Data Identification, Surrogate Space Manager, IO Redirector,

Space Reclaimer, and Administrator Interface. They all reside in the source node

of VM live storage migration. The responsibilities of the five modules are elaborated

as follows:

Popular Data Identification tracks the popularity of read requests from the

VM itself in the virtual disk images. Only the popular data blocks that will be read

are outsourced to the surrogate device. Since the surrogate device serves all write

requests, it is unnecessary to track the popularity of write requests. Each virtual

disk image of the running VM is divided into fixed size chunks, and the Popular
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Figure 3.1: The WAIO system architecture.

Data Identification module records the access frequency for each chunk. If the access

frequency for a particular chunk exceeds a predefined threshold, the whole chunk will

be outsourced to the surrogate device. All the subsequent accesses to this chunk

will be served by the surrogate device, which removes their IO interference with the

migration process.

The migration module normally scans the whole virtual disk images by sending

read-only requests. Most of these requests are only issued once, with the exception

of the requests that read dirty data blocks. Therefore, the popularity of data chunks

is not affected by the requests from the migration module.
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IO Redirector redirects the appropriate IO requests from the running VM itself

to the surrogate device. It redirects all the write requests on the surrogate device, in

order to reduce the IO traffic to the original storage device. Meanwhile, all the popular

read requests, identified by the Popular Data Identification module, are redirected to

the surrogate device by the IO Redirector. When the surrogate device only has partial

data for a request, the IO Redirector will issue read requests to the original storage

device, and merge the data from the original device with that in the surrogate device.

The non-popular read requests will be directed on the original storage device and

the data chunk will be outsourced to the surrogate storage device only if the access

frequency exceeds a predefined threshold.

The read requests from the migration module can be redirected to either the

original storage device or the surrogate device. While the original storage device

provides the bulk of the virtual disk images, the surrogate device supplies the updated

data chunks. Most of the requests will be redirected to the original storage device,

due to the VM workload locality.

Surrogate Space Manager is responsible for managing the surrogate device

and perform garbage collection within the surrogate device. The IO Redirector needs

to request free storage space from the Surrogate Space Manager, before the data is

stored on the surrogate device.

Space Reclaimer is used to reclaim all the blocks in the surrogate device after

the migration is completed, so that the surrogate device is available to other storage

services. It is also responsible for freeing the data structures in memory.

Administrator Interface provides an interface for system administrators to con-

figure design options. Particularly, WAIO collects the information about the surrogate

storage device through this interface.

The design of WAIO is quite flexible. First, the Popular Data Identification
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module can be implemented with different algorithms that capture the locality of

read requests for different applications. We employ the access frequency to evaluate

the popularity of data chunks, and there are many other algorithms for the same

purpose [12]. WAIO can easily implement any combination of them to capture the

popular read requests efficiently for different workloads. It may be preferable to

capture and analyze the IO access patterns before the start of migration, and then

choose the most suitable algorithm in the WAIO during the live migration. Second,

the surrogate storage device can be a spare SSD, HDD, RAID or free storage space on

other nodes, as long as there is free comparable storage bandwidth. Finally, WAIO

can be incorporated into various migration approaches (e.g., DBT and IO Mirroring)

and other VM functionalities (e.g. VM Replication). In this paper, we focus on the

VM live storage migration scenario.

3.2.2 WAIO Algorithm

WAIO exploits the VM’s working set and outsources it to the surrogate storage device

during the migration period. For this purpose, WAIO needs to track the following

information in memory, as depicted in Figure 3.2.

1. The popularity of each chunk in the virtual disk images: WAIO

employs a Hash Table to track the accessed data chunks during the migration. When

a data chunk is accessed for the first time, WAIO adds an entry in the Hash Table

for this data chunk. The key is the data chunk’s logical chunk id, and the value

contains the access count (frequency) and a pointer to the chunk entry. For subsequent

accesses, we need to keep updating the corresponding entries in the Hash Table.

2. The status of each chunk: During the migration, data chunks of the

virtual disk images have different states. In order to track such state information,

WAIO employs several fields in the chunk entry, including Cache Bit, Dirty Bit,
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Dirty Bitmap Pointer and Physical Address. The Cache Bit records whether the

corresponding chunk is already cached in the surrogate storage (Cache Bit is set to

1) or not (Cache Bit is set to 0). The Dirty Bit indicates whether new data has

been written to this chunk during the migration period. If so, the Dirty Bit is set

to 1; otherwise set to 0. When the Dirty Bit is set, a Dirty Bitmap is required to

track the updates to this chunk in details (e.g., which bytes in this chunk have been

overwritten) and its address is stored in the Dirty Bitmap Pointer field of the chunk

entry. Finally, The starting address of the data chunk in the surrogate storage is

recorded in the Physical Address field of the Chunk Entry.

In the VM live storage migration, both the running VM and migration module

in the hypervisor send IO requests to the virtual disk images of this VM. If an

IO request needs to access multiple consecutive data chunks, the request will be

divided into multiple sub-requests that will access their corresponding data chunks

concurrently. The original request will not complete until all the sub-requests finish

their IO operations. If an IO request only needs to access one data chunk, then the

request itself is also regarded as a sub-request. All sub-requests will be serviced by

the original storage device and the surrogate storage device.

An IO sub-requests from the running VM can be either a read and write request.

For the read sub-requests, WAIO first looks up the Hash Table for the corresponding

data chunk. If there is no such an entry (the data chunk is not in the surrogate

device), WAIO serves this sub-request by reading the data chunk from the original

disk. In addition, the whole data chunk is outsourced to the surrogate storage device,

and a new entry is inserted to the Hash Table, which indicates that this data chunk

is in the surrogate storage. If the entry exists, WAIO will check the chunk entry to

determine the status of this data chunk. When the Cache Bit is set (the whole chunk

is cached in the surrogate storage), this sub-request will be directly served by the
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surrogate storage device. Otherwise, WAIO will perform the following operations: 1)

read the whole chunk from the original disk, 2) merge them with the dirty data in

the surrogate storage, 3) return data to the sub-request, 4) update the chunk entry

information. For the write sub-requests, WAIO only needs to write the data to the

surrogate storage device and update the corresponding chunk entry in the Hash Table.

Entry	
  1	
  

Entry	
  2	
  

Entry	
  3	
  

...	
  
…	
  

Entry	
  n	
  

Key:	
  chunk	
  id	
  

Access	
  frequency	
  

Chunk	
  Entry	
  pointer	
  

Cache	
  Bit	
   Dirty	
  Bit	
   Dirty	
  Bitmap	
  
Pointer	
  

Physical	
  Address	
  in	
  
surrogate	
  storage	
  

Chunk	
  Entry	
  

…	
  

…	
  

Chunk	
  Entry	
  

Hash	
  Table	
  

Chunk	
  Entries	
  

Surrogate	
  Storage	
  
Device	
  

......	
  
……	
  

data	
  chunk	
  Dirty	
  Bitmap	
  1	
  

Dirty	
  Bitmap	
  2	
  

Dirty	
  Bitmap	
  3	
  

...	
  
…	
  

Dirty	
  Bitmap	
  n	
  

Dirty	
  Bitmap	
  

data	
  chunk	
  

data	
  chunk	
  

data	
  chunk	
  

……	
  
……	
  

Figure 3.2: Data structure of the WAIO system

3.2.3 Data Consistency Issues

Data consistency is a key issue for the design of systems ranging from single node to

large scale distributed systems [61, 62, 63]. In WAIO system, two aspects deserve to
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consider carefully: 1) all the in-memory data structures must be safely stored, and

2) the data outsourced to the surrogate storage device must be reliably stored until

they are reclaimed by WAIO.

First, in order to prevent unexpected data loss of the in-memory data structures,

including the Hash Table, Chunk Entries and Dirty Bitmaps, WAIO stores them in

a non-volatile RAM (NVRAM). The total size of these in-memory data structures

is very small, so that it will not incur significant extra hardware cost. For instance,

given a 1TB virtual disk image with 1MB chunk size, the space consumption in the

worst case is only 25MB, when each chunk is outsourced to the surrogate storage

device. In addition, the NVRAM is already widely deployed in the storage servers in

the cloud data centers, for the purpose of system reliability and write performance

improvement. Therefore, it is feasible to make use of the existing NVRAM to store

these in-memory data structures.

Second, we can rely on the already built-in reliability mechanism (e.g. RAID,

ECC, Replicas) of the surrogate storage device to protect the data outsourced from

WAIO. Moreover, these resources are only necessary during the migration period.

Once the VM live migration completes, they will be reclaimed and available to other

services.

3.3 Performance Evaluation

We implement a lightweight prototype of WAIO in the QEMU-KVM system. Since

WAIO is orthogonal and complementary to existing VM live storage migration ap-

proaches, we evaluate its effectiveness by conducting performance comparisons be-

tween DBT, a representative state-of-the-art approaches, and DBT enhanced with

WAIO in different migration scenarios. The evaluations are driven by three real
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world block level traces that represent different workload characteristics.

3.3.1 The Prototype Implementation

In the QEMU-KVM system, the IO functionality is provided by the QEMU system

that is an open-source virtual machine emulator [64]. QEMU can emulate many

virtual devices for virtual machines, including virtual disk drives and virtual network

interface cards. The QEMU driver captures all the IO requests from VMs, and then

passes them to the KVM kernel module. The KVM kernel module will dispatch these

requests to the corresponding QEMU application and return the results to the VM.

The QEMU application processes the IO requests on behalf of the VM [65]. WAIO is

implemented in the QEMU application and therefore is able to capture the working

set of the running VM.

When the VM live migration command is received at the hypervisor, WAIO is

initiated and the in-memory Hash Table is created. WAIO redirects IO requests from

both the hardware emulation layer (VM IOs) and the migration module (Migration

IOs) in the bdrv co readv em and bdrv co writev em functions. The popular read data

and newly written data are outsourced to the surrogate device (configured by WAIO

administrator interface) and the in-memory Hash Table and chunk entries are updated

at the same time. When the migration process completes, both the in-memory Hash

Table and storage space on the surrogate device are reclaimed by the space reclaimer

of the WAIO. WAIO is implemented in a lightweight manner, which only requires 638

lines of code added or modified in the QEMU application.

3.3.2 The Experimental Setup

The experimental platform consists of two servers as the source and the destination

for the VM live storage migration. Each server is configured with an Intel Xeon X3440
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processor, 8GB DDR memory and two 1TB hard drives, 12.10 Ubuntu system, QEMU

1.5.1 system with KVM enabled. The server in the source side of the migration has

an 80GB SSD as the surrogate device. These two servers are connected by a 1Gbps

Ethernet. The hardware information is described in details in Table 5.1.

Table 3.4: Hardware Specifications in Our Experimental Platform

CPU Intel(R) Xeon(R) CPU, X3440@2.53GHz
MotherBoard Winbond Electronics 0V52N7

Memory 8GB, AMI CMX8GX3M2A1333C9
Hard Drives 1TB Seagate ST31000524AS, SATA

SSD 80GB, Intel SSDSA2CW08
Network 1Gbps Ethernet

In order to measure the performance of WAIO, we migrate a running VM be-

tween the two servers. The VM is configured with 1 virtual CPU, 2GB memory, 1

virtual disk, 1 virtual network interface card and Ubuntu 12.10 system. During the

migration, we replay block level traces and collect the IO performance within the

VM. The Storage Performance Council [66] has published several block level traces

for research purposes, and these traces have been widely employed to evaluate the

storage system performance [67, 68, 69]. The Financial1 and Financial2 traces are

collected from OLTP applications in a large financial institution and the WebSearch1

trace is collected from a web search engine. The key characteristics of these traces

are summarized in Table 3.5. In our experiments, we implement a trace replay tool

that will read the trace file and keep sending the IO requests to the VM’s virtual disk.

The IO throughput, as the VM IO performance metrics, are reported by the trace

replay tool during the live storage migration. In a typical virtualized environment,

there are multiple running VMs within a single server. In our experiments, there are

two more running VMs in each server. One VM is running the fileserver benchmark

and the other one is running the webServer benchmark.
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Table 3.5: Trace characteristics

Trace Name Read Ratio IOPS Avg. Req. Size (KB)
Financial1 32.8% 69 6.2
Financial2 82.4% 125 2.2

WebSearch1 100% 113 15.1

3.3.3 Trace Driven Evaluations

As indicated earlier, DBT is one of the fundamental approaches for the VM live

storage migration. We integrate our WAIO into the DBT scheme and run experiments

to evaluate the performance improvement. In this experiment, the VM is configured

with 2GB memory, one 15GB virtual disk image attached with a virtio driver. The

cache mode is set by default (writethrough) in the QEMU application, which enables

the host page cache and disables the VM disk write cache. One spare SSD in the

source server is employed as the surrogate device, and we set the migration speed of

the running VM at 40MB/s. We replay the three traces during the VM live storage

migration and set the number of outstanding IOs as one. The IO throughput within

the VM is reported when the migration completes.

Figure 3.3 shows that, compared with DBT, WAIO increases the throughput by

a factor up to 1.30, 2.61 and 11.10 for the Financial1, Financial2 and WebSearch1

traces respectively. The reasons why WAIO achieves significant improvement on IO

throughput are threefold. First, most of the IO requests (more than 90% for all of

the three traces) are outsourced to the surrogate SSD, so that they are not affected

by the migration IO requests. The average request size is several KBs (see Table 3.5),

while the chunk size is 1MB. By outsourcing a single chunk, the surrogate SSD can

serve many incoming IO requests with a high possibility. This is why WAIO can

outsource such an amount of IO requests to the surrogate SSD. Second, the surrogate

SSD has better IO performance than the original hard disk. Even if we use hard
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Figure 3.3: VM IO performance during the migration

drive as the surrogate device, WAIO can still improve the throughput to some extent.

We will show this result in the sensitivity study. Third, since many IO requests are

outsourced to the surrogate SSD, the IO queue in the original device is shortened

accordingly, thus increasing the throughput of the remaining IO requests served by

the original device.

In addition, WAIO only consumes 3.99%, 5.57% and 10.01% of its virtual disk

space in the surrogate device for the Financial1, Financial2 and WebSearch1 traces

respectively. Such storage space overhead in the surrogate storage device is negligible

and will be reclaimed immediately when the live migration completes.

Figure 3.4 shows a comparison of the DBT and WAIO’s average user response

time every 10 seconds. In this test, the migrating VM has two virtual disk images:

system disk image and data disk image, and these two virtual disk images reside in
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different storage devices. The running application within the VM keeps read/write

data from the data disk images. From the figure, we can see that the user response

time performance of DBT and WAIO during the migration of the system disk is almost

the same. During the migration of the data disk, it is clear that WAIO significantly

improves user response time performance of the baseline DBT, by 91% on average.

Figure 3.4: VM IO performance during the VM live storage migration with two virtual
disk images

3.3.4 Sensitivity Study

WAIO’s performance is likely influenced by several important factors, including sur-

rogate device type, cache mode in the QEMU application, migration speed and the

virtual disk image size. Due to the space limitation, we only discuss the sensitivity

studies on the Financial2 trace. It also shows similar trends for the other traces.

Surrogate Device: To evaluate the impact of surrogate devices on the VM IO

performance during migration, we employ an SSD and an HDD as the outsource target

and conduct experiments that measure VM IO performance during migration. The
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Figure 3.5: VM IO performance comparison under different surrogate devices

virtual disk image size is 15GB and the migration speed is 57MB/s. Figure 3.5 shows

the evaluation result. When the spare HDD is used as the surrogate device, WAIO

improves the VM IO throughput by 79.3% (from 0.58MB/s to 1.04MB/s). Only

528MB space overhead is introduced on the spare HDD. Moreover, the consumed

space can be reclaimed after the live migration completes, about 6 minutes later in

our experiments, driven by the Financial2 trace. The VM IO performance can be

further improved by 213% with a spare SSD as the surrogate device. We can see that

with an SSD-based surrogate device, the overall performance improvement will be

better. The reason is that the SSD has better IO performance than the HDD. Given

the wide deployment of hybrid storage system, it is preferable to employ a spare SSD

as the surrogate device for WAIO.

VM Cache Mode: There are three modes of VM cache management in the



www.manaraa.com

42

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

Writethrough	
   Writeback	
   None	
  

Th
ro
ug
hp

ut
	
  (M

B/
s)
	
  

DBT	
  

WAIO+DBT	
  

Figure 3.6: VM IO performance comparison under different cache modes

QEMU application: writethrough (default), writeback, and none. The writethrough

mode enables the host page cache and disables the VM disk write cache. The write-

back mode enables both the host page cache and the VM disk write cache. The none

mode disables the host page cache and enables the VM disk write cache. Figure 3.6

shows the performance improvement of WAIO under all of the three cache modes. We

can see that WAIO improves the VM IO performance during migration by a factor

of 3.75, 1.71 and 11.83 for the writethrough mode, writeback mode and none mode,

respectively. This result also demonstrates that there is still tremendous access local-

ity observed at the physical block device level, even after the filtering of the two level

buffer caches (VM cache and host cache). Thus, by making good use of such access

locality, WAIO is able to improve the VM IO performance during migration. In the

none cache mode, the cache space in memory is relatively small (only VM disk write
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cache is enabled). In this scenario, WAIO is extremely useful in boosting the VM IO

throughput, since it can capture the VM’s working set more effectively.
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Figure 3.7: VM IO performance comparison under different migration speeds

Migration Speed: To examine the sensitivity of WAIO to the VM migration

speed, we conduct experiments to migrate the VM at different migration speeds and

measure the VM IO performance. The VM IO throughput is reported in Figure 3.7.

We draw three key observations. First, the VM IO throughput drops significantly as

the migration speed increases. This is because there are more migration IO requests

waiting in the queue of original storage device at a higher migration speed, taking

away more storage bandwidth available for the VM IO requests. Second, WAIO

improves the VM IO performance by a factor of up to 6.09 at different migration

speeds, compared with DBT. In WAIO, once the VM’s working set is outsourced to

the surrogate device, the VM IO requests are mainly served by the surrogate device.
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As a result, their throughput is less affected by the increased migration IO requests.

Third, WAIO provides more flexibility to the cloud-computing infrastructure. Com-

pared with DBT, WAIO can either achieve similar VM IO throughput (5.25MB/s)

with a higher migration speed (41.6MB/s over 33.8MB/s), or achieve higher VM IO

throughput (5.25MB over 2.24MB/s) at a similar migration speed (33.8MB/s). Sys-

tem administrators can define different policies for live storage migration, based on

the service level agreement and system management requirement.
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Figure 3.8: VM IO performance comparison with different virtual disk image sizes

Virtual Disk Image Size: To evaluate WAIO with different virtual disk image

sizes, we create four VMs with different virtual disk images (i.e., 15GB, 20GB, 25GB,

and 30GB), and then measure the VM IO performance during migration. Also, we

scale the address space of the trace file to cover the address space of the virtual disk

image in our experiment. Figure 3.8 shows that the VM IO throughput in both WAIO

and DBT decreases as the virtual disk image size increases, due to the increased time-

consuming disk seek operations. At the same time, WAIO outperforms DBT by a
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factor up to 2.10, in terms of VM IO throughput during migration. Such improvement

is mainly attributed to the reduced IO interference in the original device. In addition,

since the outsourced data chunks are allocated sequentially in the surrogate device,

WAIO is less sensitive to the virtual disk image sizes than the DBT mechanism.

Therefore, WAIO becomes more effective than DBT in the VM live storage migration

with larger virtual disk images.
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Chapter 4

SnapMig: Snapshot-based VM Live Storage Migration

4.1 Background and Motivation

In this section, we provide the necessary background information for the SnapMig

research, including VM snapshots, live migration of VM snapshots and VM snapshot

backup, which then helps motivate this research.

In the production environment, VMs may encounter two types of failures: system

crash and data loss. VM snapshots, which preserve the VM status at a previous time

stamp, can be employed to roll back the VM to a previous consistent state before

the system crash happened. Snapshot backup that transfers previous VM snapshots

to backup servers is routinely leveraged to restore VM states when hypervisors hit

data-loss failures [70, 71, 72]. Both of these two schemes are extensively deployed in

the cloud industry products [73].

As indicated in previous chapters, the VM live storage migration is a nontrivial

job. All the state information of the migrating VMs, including the memory footprint,

the states of the virtual network, the virtual disk images and snapshot informa-

tion [74], must be migrated to destination servers [75]. The total size of such state

information is usually dozens of GB’s, of which the largest part is the virtual disk

images and snapshots that account for about 80% to 95%. In addition, as migrating

VMs are running applications for customers during the migration period, VM states



www.manaraa.com

47

keep changing in the migration period and all these updates must be migrated to the

destination servers as well. More importantly, when multiple VMs live migrate at the

same time, it is more challenging to migrate VMs quickly and provide reasonable IO

performance for all the VMs simultaneously [51, 13].

During the VM live storage migration, additional migration threads are intro-

duced in the source servers and they consume significant amount of storage resource.

However, the overall system resource is not increased at all. The migration threads

and VM threads interfere, instead of cooperate, with each other, which leads the

performance of all these threads to degrade significantly [76]. There are several VM

migration schemes proposed in the literature and industry products, such as Dirty

Block Tracking [11], IOMirroring [11], workload-aware [12] and redunfdant data re-

duction [77, 78] approaches. However, all of them ignore the fact that migrating

VMs’ base images and previous snapshots are already in the backup servers (through

the regular backup operations), and backup servers can help migrate this resource-

hungry (i.e., network and storage bandwidth) information to the destination servers

on behalf of the source servers. In this paper, we argue that by leveraging the VM

backup snapshots in the VM migration process, the overall migration efficiency can

be improved significantly.

Motivated by the observation of the VM snapshots-backup process and its result-

ing snapshots of VM state information available in the backup servers, we propose a

novel VM live storage migration scheme, called SnapMig, to improve both the VM

performance and migration performance simultaneously. By leveraging the backup

servers to transfer migrating VMs’ base images and previous snapshots, the source

servers only need to migrate the latest VM state changes to the destination servers.

Consequently, the otherwise severe interference between the I/O traffic generated

by the user applications within the VMs (including the migrating VMs) in source
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servers and the I/O traffic induced by the VM migration process is significantly re-

duced, leading to substantial performance improvements to both the VM threads

and migration threads. In addition, After the migration, recent VM snapshots made

available in the destination servers by the backup servers allow the users can roll back

their VMs to previous states freely. Moreover, SnapMig is orthogonal to existing mi-

gration approaches, and it is regarded as a performance optimization layer for the

existing migration approaches. Finally, we observe that the performance advantages

of SnapMig become more pronounced with the concurrent live storage migrations of

multiple VMs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Storage Device 

Disk Image: Base File 

LBA PBA 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

Disk Image: Snapshot 1 

LBA PBA 

3 8 

6 9 

7 10 

Update block 3 
and 6 and 7 

LBA PBA 

3 11 

8 12 

9 13 

Update block 5 
append 8 and 9 

Disk Image: Snapshot 2 

LBA PBA 

2 14 

4 15 

10 16 

7 17 

11 18 

Update block 2,4 
append 10 

Disk Image: Snapshot 3 

LBA: Logical Block Address 
PBA: Physical Block Address 

Requests Step_1 Step_2 Step_3 Step_4 Step_5 Step_6 

Read block 1 Search Snapshot 3 Search Snapshot 2 Search Snapshot 1 Search Base 
File 

Get PBA 1 Read PBA 1 from 
Storage Device 

Read block 6 Search Snapshot 3 Search Snapshot 2 Search Snapshot 1 Get PBA 9 Read PBA 9 from 
Storage Device 

Update block 7 Allocate block 17 in 
Storage Device 

Write data to 
physical block 17 

Add an entry to 
Snapshot 3(7->17) 

Append block 11 Allocate block 18 
In Storage Device 

Write data to 
physical block 18 

Add an entry to 
Snapshot 3(11->18) 

Figure 4.1: The structure of VM snapshots and the workflow for read/write requests
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4.1.1 VM Snapshot

For the VM reliability and availability purposes, VM snapshots are widely employed

to restore VMs for customers upon system crash or data loss [70, 71, 79, 80, 74].

Currently most modern virtualization platforms, including VMware, HyperV, and

KVM, support snapshots in their products.

There are two types of snapshot: disk snapshot and system snapshot. Disk snap-

shot retains the state of the corresponding VM’s virtual disk image at a specific

time stamp. Given a disk snapshot, the user can roll back the VM to a previous

consistent state freely, but the VM needs to reboot and applications are required to

restart. The creation process for a disk snapshot includes two phases: 1) flushing

only the in-memory buffer cache data to virtual disks, and 2) taking a snapshot for

each virtual disk. Therefore, there is negligible performance overhead for running

applications within in the VM. Disk Snapshot is largely adopted for VM backup and

disaster recovery. System snapshot contains the state information of the RAM and

other virtual devices of the VM, besides virtual disk images. With the support of

system snapshots, users can roll back the VM to a previous running state. Applica-

tions will be resumed at the last execution point, so that it is unnecessary to reboot

the VM in the restore period. However, a system snapshot takes a longer time to

create than a disk snapshot, since the state of the memory footprint and all virtual

devices will be recorded in the snapshot. In addition, the running VM will be stunned

during the creation phase, which will cause significant performance degradation for

the running applications inside the VM [38]. System snapshots are mainly used to

perform risky operations in the testing environment. In this work, we only focus on

the disk snapshots, because they is widely used in the VM environment. Moreover,

a scheme based on disk snapshots is also easy to be extended to be based on system



www.manaraa.com

50

snapshots.

For the purpose of storage efficiency, every VM snapshot only records the state

changes of the VM image made since the most recent snapshot in the implementation,

assuming that it has the access to all the previous snapshots and the base image. As

shown in Figure 4.1, each snapshot and the base image maintain a mapping table from

the Logical Block Address (LBA) to Physical Block Address (PBA) as their metadata.

Each table (except the one in the base image) records the updates and new writes

since the most recent snapshot. For the update (block 7) / write (block 11) requests,

new entries are added to the mapping table of snapshot 3 (the current snapshot). For

the read requests (block 1 and 6), older snapshots (snapshots 1, 2 and 3) and/or the

base image have been queried in order to get the latest version of the accessed data

blocks. Normally, production servers hold several snapshots for each VM, so that

the VM can be restored to any of the stored previous snapshots quickly upon system

crash or data corruption. Besides the snapshot support in modern virtualization

platforms, major storage vendors like EMC also provide storage optimization for VM

snapshots [73].

4.1.2 VM Snapshot Migration

As indicated in the previous subsection, there are several existing snapshots for each

VM created by the user or system automatically, and each snapshot holds the changes

of the VM image since the last snapshot or base image (if this is the first snapshot).

The size of each VM snapshot varies significantly, and it largely depends on the write

traffic to the running VM. Take the Aliyun cluster use case [81, 14] as an example, the

size of each VM is 40GB, and each VM snapshot is 8GB on average, which means 20%

of the virtual disk images have been changed since the last snapshot. When it comes

to the VM live migration, these snapshots will be either migrated to the destination



www.manaraa.com

51

server (named FullMig) or discarded at source server (named SelectiveMig). If we

migrate these snapshots to destination server (FullMig), the user can make use of

these snapshots for VM restore at the destination server, as they did before the

migration [38]. However, the total amount of data transmission increases and a

longer migration time is unavoidable. If we discard the snapshots, and just migrate

the current VM state to the destination server (SelectiveMig), the total amount of

data transmission is much smaller than the FullMig option [82]. However, users can

not roll back to any of the previous snapshots at the destination server.

Our experimental results show that the VM IO performance drops from 285
65

=

4.38× (reduction) to 279
35

= 7.97× (reduction), from migrating one VM to migrating

2 VMs, as indicated in figure 4.2. At the same time, the migration time increases for

more than 3× for both FullMig and SelectiveMig scheme, when we compare the 2 VMs

concurrent migrations with single VM migration. Ideally, we would like a solution that

can deliver faster VM live storage migration and preserve all the previous snapshots

simultaneously. More importantly, we would like to reduce the traffic for the source

server, as the performance degradation for the migrating/co-located VMs in the source

server in the migration period is crucial for the overall system performance.

4.1.3 VM Snapshot Backup

For the VM reliability and availability purposes, there are many mechanisms employed

to protect VMs, such as snapshots of the datastores via storage systems, replication

of storage volumes/LUNs, snapshots of virtual machines and replication within vir-

tualized applications [73]. Among all these mechanisms, the most widely employed

one is VM snapshot backup. In the runtime, a series of VM snapshots are created,

and then these snapshots will be transferred to backup servers in the backup window

regularly. Within backup servers, these snapshots will be further processed to reduce
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Figure 4.2: The VM IO performance comparison during the live storage migrations

the storage space consumption [83]. For instance, by employing the deduplication

techniques, the redundant data blocks will be identified and removed. As indicated

in Figure 4.3, for a particular VM (JohnVM), the production server holds several most

recent snapshots (snapshots 5, 6 and 7) for a single VM, while the backup server holds

all the previous VM snapshots (snapshots 1-6) and the base image (JohnVM.img) at

the time of the last backup operation. The newly created snapshot (snapshot 7) after

the last backup operation will only reside in the production server. The previous

snapshots (1-4) are merged into the base image (JohnVM.img’) in the production

server. In this scenario, if the production server encounters any data loss or power

outage issue, there is still an extra copy of the VM and its snapshots in the backup

server. Another production server can resume the VM with the support from the

backup server. When there is no data corruption occurring in the production server,

the snapshots in the backup server will remain idle most of the time.
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Figure 4.3: The distribution of VM snapshots among production servers and the
backup server

4.1.4 Motivation

During the VM live storage migration, the source server will be quite busy, e.g.,

executing the scheduled maintenance task, running many co-located VMs, or waiting

to shutdown soon. In general, whenever VM live storage migration is invoked, IO-

intensive migration threads will be introduced to the source server. In order to achieve

satisfactory VM IO performances for all the migrating/co-located VMs in the source

server and migrate VMs to the destination servers quickly, it is vital to eliminate

the unnecessary IO traffic to in the source server. Motivated by the observation
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and analysis above about the idle snapshots in the backup server(s), we propose the

SnapMig scheme that can achieve these goals by leveraging these idle snapshots in the

backup servers. In the SnapMig scheme, backup servers transfer migrating VMs’ base

images and previous snapshots to the destination server(s), while the source server

only migrates the latest changes to the migrating VMs. The migrating VMs will be

resumed once their states are reconstructed successfully in the destination server(s).

The benefits of SnapMig are fourfold: 1) Better VM IO performance during the

migration, because the much reduced, if not completely eliminated, migration traffic

involved in the source server allows the migrating/co-located VMs to achieve much

better IO performance, as if there were no migration at all for most of the time;

2) Shorter migration time, because the backup server(s) that are idle most of the

time can transfer the VM images to the destination server(s) at a much higher speed

than any source server that has a very heavy running workload; 3) All the previous

snapshots are available in destination server(s), so that the users can freely roll back

VMs to any of the previous states; and 4) The performance improvement will be much

more pronounced in the scenarios where multiple VMs are live migrated concurrently.

4.2 System Design and Implementation

In this section, we present the design and implementation of the proposed SnapMig

by introducing the SnapMig architecture, its key functional modules and workflow.

4.2.1 SnapMig Architecture

Figure 4.4 shows the architecture overview of the distributed virtualization system

that includes three parts: management clients, production servers and backup

servers, connected by a high speed network. Management clients provide a console
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Figure 4.4: The architecture of SnapMig System.

for system administrators to perform various management jobs, such as VM creation,

VM snapshot backup and VM live migration. They can reside anywhere as long

as the network connection to other servers is available. Production servers host

many live VMs and perform jobs as requested by the management clients. There are

two layers in the production servers: virtualization management server (VMS) and

the hypervisor module. The VMS listens to the incoming requests from the man-

agement clients and perform jobs by calling the corresponding functionality within

the hypervisor module. By design, the VMS, such as open source libvirt [84], can

support most modern hypervisors. Backup servers store VM snapshots from the
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production servers through regular backup operations, and they are usually equipped

with various functionalities for the purpose of reliability and space efficiency, such as

redundant data elimination and data compression [83].

The SnapMig scheme is integrated into this cluster and it consists of four func-

tional modules. Snapshot Indexing and Coordination Service are within the

VMS component in the production servers, while Snapshot Consolidation and

Snapshot Scheduling are in the backup servers, as shown in Figure 4.4. The re-

sponsibilities of these four modules are elaborated below.

Snapshot Indexing tracks the distribution and placement of VM snapshots

among the backup servers. There may be multiple copies of a single VM snapshot

in several backup servers for increased reliability, especially for VMs with higher

priorities. In addition, VM snapshots may be migrated among the backup servers for

the purposes of load balancing and reliability. Once the VM live migration starts, this

module will query backup servers for the distribution and placement of the current

snapshots of the migrating VM and pass it to the Coordination Service module.

Coordination Service controls the VM live migration workflow. With the snap-

shots distribution and placement information from Snapshot Indexing, Coordinate

Service will instruct the corresponding backup servers to migrate VM base image and

previous snapshots to the destination server. Once these backup servers finish the

transmission, this module will invoke the native migration engine within the source

server, which will live migrate the latest snapshots and in-memory state to the desti-

nation server. Meanwhile, this module will re-configure the VM and its snapshots in

the destination server. Finally, it will log the overall migration progress, so that the

migration can be resumed upon migration failures.

Snapshot Consolidation is designed to eliminate the unnecessary data trans-

mission from the backup servers to the destination servers. It merges some older
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snapshots to the base image or a single snapshot, before migrating them to the desti-

nation server. As shown in Table 4.1, snapshots 1-4 are unnecessary for the destina-

tion server, it would be better to merge them to the base image before the snapshot

migration.

Snapshot Scheduling is an advanced feature designed for the further reduction

of the total migration time. With the analysis of the migrating VM’s working set, the

sequence of blocks in the base image and snapshots can be scheduled, so that “hot”

blocks (i.e., frequently accessed) that are within the VM’s working set are migrated

before others. Once these hot blocks are ready in the destination server, the source

server starts the live migration of the latest state changes, and then the VM can

be restarted in the destination before all the blocks are migrated to the destination

server. Although this module is under implementation and thus not shown in the

evaluation results of Section 4, we expect it will further reduce the total migration

time significantly.

The design of SnapMig is quite flexible. First, it supports all kinds of modern

hypervisors, as SnapMig communicates with hypervisors through the standard Vir-

tualization Management API. Second, the SnapMig scheme is orthogonal to most

state-of-the-art VM live storage migration approaches included in the Migration En-

gine in Figure 4.4, and it can complement with these existing approaches to further

improve the VM live storage migration performance. Finally, the SnapMig scheme is

scalable to the architecture of the cluster. Backup servers and production servers can

be freely added to or removed from the cluster in the runtime.

4.2.2 SnapMig Workflow

Figure 4.5 shows the workflow of the VM live storage migration in the SnapMig

scheme by way of an example. In this example, the migrating VM has a single
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Table 4.1: An example of VM snapshots distribution and placement during the mi-
gration process

Server Name VM ID Base File Snapshots
Source Server JohnVM JohnVM.img’ 5 6 7

Destination Server JohnVM JohnVM.img’ 5 6 7
Backup Servers JohnVM JohnVM.img 1 2 3 4 5 6

disk image (named JohnVM.img) and 7 disk snapshots (1-7) in total, as indicated

in Table 4.1. The snapshot 7 is created after the last daily backup operation, so it

only resides in the source server. The base image and all other snapshots, 1-6, are

already stored in the backup servers through the regular backup operations. There

are several copies for the base image and some important snapshots in the backup

servers for the reliability purpose. In order to save storage space in the source server

and allow users to roll back to recent snapshots, the older snapshots (1-4) are merged

to the base image. Only newer snapshots (5-7) are retained in the source server.

As indicated in Section 4.1.2, FullMig and SelectiveMig are the state-of-the-art

migration approaches. In the FullMig approach, the VM base image and snapshots

5-7 are migrated to the destination server first, and then a conventional migration ap-

proach within the migration engine, such as Dirty Block Tracking or IOMirroring [11],

is called to migrate the in-memory state and the latest VM state changes. Different

from the FullMig approach, SelectiveMig only migrates the latest virtual disk image

to the destination server and discards all the existing snapshots, such as snapshots

5-7. For instance, if a specific data block is updated both in snapshot 5 and snapshot

7, SelectiveMig only migrates the latest version of this data block (from snapshot 7).

The workflow of our SnapMig scheme is as follows. At the beginning of the

migration, the Coordination Service queries the Snapshot Indexing for the latest

distribution and placement of the migrating VM’s snapshots. Then it will notify
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Figure 4.5: The workflow of the SnapMig scheme.

the corresponding backup servers to start the base image and snapshots migration.

These backup servers will consolidate all the unnecessary snapshots first and start the

migration to the destination server. Once the base image and snapshots are available

in the destination server, the source server will migrate the latest state changes and

the in-memory state to the destination. The VM will be resumed in the destination

server finally.

Compared with FullMig and SelectiveMig, SnapMig introduces negligible migra-

tion traffic in the source server, including only the read requests of storage system

and network transmission. For instance, if a specific data block is updated in the
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base image and snapshots 5-6, SnapMig does not need to migrate this data block to

the destination, since this data block will be migrated by the backup servers. Such

significant traffic elimination in the source server will improve the overall system per-

formance in several aspects: shorter migration time, better VM performance, and

better multiple VM migrations, which will be evaluated in Section ??.

4.3 Performance evaluation

In this section we present a detailed evaluation of our SnapMig scheme in comparison

to two state-of-the-art VM migration schemes, FullMig and SelectiveMig. We focus

on two key measures of VM migration efficiency, the VM migration performance

(migration time) and VM IO performance (IO throughput of user applications within

migrating and co-located VMs in the source server), under different configurations

(e.g., single vs. multiple co-located VMs in the source server, single vs. multiple

migrating VMs).

4.3.1 The Experimental Environment

In order to evaluate the performance of our SnapMig scheme, we implement a light-

weight prototype of SnapMig in a cluster to conduct VM live storage migration ex-

periments. The cluster consists of three servers, a source server, a destination server

and a backup server. Each server is configured with an Intel Xeon X3440 processor,

8GB DDR memory and two 1TB hard drives, 12.04 Ubuntu system, QEMU 2.4.50

system with KVM enabled and libvirt 1.2.20. The SnapMig prototype is embedded in

the libvirt platform [84]. In the source and destination servers, the host system and

software are installed in one disk drive and all the VM virtual disk images are stored

in a hardware RAID set. The backup server only stores and transfers VM virtual
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disk images and snapshots. These three servers are connected by a 1Gbps Ethernet.

The hardware information is described in details in Table 5.1.

Table 4.2: Hardware Specifications in Our Experimental Platform

CPU Intel(R) Xeon(R) CPU, X3440@2.53GHz
MotherBoard Winbond Electronics 0V52N7

Memory 8GB, AMI CMX8GX3M2A1333C9
Hard Drives 1TB Seagate ST31000524AS, SATA

RAID 4*160GB, RocketRaid 2240
Network 1Gbps Ethernet

4.3.2 Performance Metrics and Experimental Setup

From the user’s perspective, the performance of the running VMs, including migrating

VMs and co-located VMs, should not be affected by the migration process, at least

to the extend of not violating the Service Level Agreement (SLA). Meanwhile, from

the cloud service provider’s perspective, the resource consumption for the live storage

migration should be minimized, for the purposes of the overall performance and energy

efficiency. For instance, to meet the SLA of user applications running on the migrating

VM and/or co-located VMs in the source server, the migration should be completed

within a reasonable time period and consume reasonable amount of network/storage

bandwidth of the source server. In this work, we focus on the following metrics to

compare SnapMig system with the state-of-the-art solutions: 1) the IO performance

of migrating VMs, 2) the IO performance of co-located VMs, 3) the migration time.

We compare the performance of our SnapMig scheme with two state-of-arts schemes

(FullMig and SelectiveMig) in different migration scenarios.

Two common VM migration scenarios are evaluated in our experiments: migration

of a single VM and simultaneously migrations of multiple VMs. Each VM is created

with 1 virtual CPU, 2GB memory, 20GB disk image, 1 virtual network interface
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and Ubuntu 12.10 system. There are a number of disk snapshots for each VM, and

each snapshot contains some updated data blocks to the VM since its last snapshot.

The base image and older snapshots resident in the backup server through the daily

backup operations, while newer snapshots sit in the source server only. During the live

storage migration, IO requests are issued from the Fio tool [85] within both migrating

VMs and co-located VMs. The performance of the three migration schemes (FullMig,

SelectiveMig, SnapMig) are compared under different user workloads generated by

the Fio benchmark.

4.3.3 Results Analysis

4.3.3.1 Migration of A Single VM

In this scenario, there is only one VM (mig-vm-1) migrating out of the source server,

and the other three co-located VMs (co-located-vm-1, co-located-vm-2, co-located-

vm-3) are running in the source server. As indicated in Figure 4.6, the IO throughput

of the migrating VM in SnapMig is about 4.61× higher than FullMig and SelectiveMig.

At the same time, the IO throughput of the co-located VMs under SnapMig is also

significantly higher that that under FullMig and SelectiveMig, by about 4.33×, as

shown in Figure 4.6. Furthermore and importantly, the total migration time of the

SnapMig scheme is significantly reduced from that of the FullMig and SelectiveMig

schemes, from about 619 seconds to 313 seconds, as shown in Figure 4.8. From these

results we have the following observations: 1) Once we leverage the backup server to

migrate the bulk of the VM images, the pressure for the storage device in the source

server drops significantly. Therefore, both the migrating VMs and co-located VMs

can have better IO performance, as if there were no migration at all. 2) Since the

backup server has virtually no running workloads outside of its backup windows, thus
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much less busy than the source server, the VM images can be migrated much faster

than from the source server.

62 62 

286 

68 65 

279 

61 69 

268 

67 62 

290 

0 

50 

100 

150 

200 

250 

300 

350 

FullMig SelectiveMig SnapMig T
he

 IO
 T

hr
ou

gh
pu

t w
ith

in
 V

M
s (

K
B

/s
) 

Different VM Live Storage Migration Approaches 

co-located-vm-1 co-located-vm-2 co-located-vm-3 mig-vm-1 

Figure 4.6: The VM Performance Comparison in Single VM Migration

4.3.3.2 Simultaneous Migrations of Multiple VMs

In this VM migration scenario, two VMs (mig-vm-1 and mig-vm-2) are migrating

from the source server to the same destination server at the same time. As shown

in Figures 4.7 and 4.8, the throughput of all the four VMs in our SnapMig scheme,

two migrating VMs and two co-located VMs are about 8× higher than that of these

VMs under the FullMig and SelectiveMig schemes. Similar to but much more pro-

nounced than the case of single VM migration, the total migration time of SnapMig

is drastically reduced that of FullMig and SelectiveMig, from 2028 seconds to 694 sec-

onds. From these results, we notice that SnapMig’s performance advantages, in both

the VM performance and migration performance, become more pronounced as more
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Figure 4.7: The VM Performance Comparison in Multiple VM Migrations

VMs are being migrated simultaneously. For example, its IO throughput advantage

over FullMig/SelectiveMig increases from 4.61× to 8× and migration time advantage

over FullMig/SelectiveMig increases from 663
351

= 1.89× (reduction) to 2028
694

= 2.92×

(reduction), from migrating one VM to migrating 2 VMs. The main reason is that,

with more migrating VMs, there will be more hungry migrating threads competing

for the same resources in the source server, which leads to more severe interference

between application IO traffic and migration IO traffic in the source server in both

the FullMig and SelectiveMig schemes and results in more serious degradation of

both IO throughput and migration time. The SnapMig scheme, in contrast, almost

completely avoids this traffic interference in the source server since the bulk of the

migration traffic is diverted or outsourced to the backup server. In other words, while

both FullMig and SelectiveMig are very sensitive to the increase in the number of

migrating VMs, SnapMig is relatively insensitive to such increase.
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Figure 4.8: The Total Migration Time in Different VM Migration Approaches

4.3.4 Sensitivity Studies

In order to investigate how the number of co-located VMs and the VM workload

characteristics affect the performance of the SnapMig system, we conduct a single-VM

migration experiment with the number of co-located VMs increasing from 1 to 7. In

addition, each VM runs two types of workload: ReadOnly workload and ReadWrite

workload during the migration. Due to the space limitation, we only discuss the

comparison between SnapMig and SelectiveMig schemes. It also shows similar trends

for the comparison between SnapMig and FullMig schemes. The performance results,

normalized to that of a single VM running in the source server without any VM

migration, are shown in figure 4.9, 4.10 and 4.11. From these results, we draw the

following observations: 1) As the number of running VMs increases, the average VM

throughput decreases. Since the overall storage resource is fixed, the more running
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VMs are involved, the less storage resource will be available to each VM. 2) In both

workloads, the average VM IO performance under the SnapMig migration is very

close to that in the No Migration scenario. However, the average VM performance

drops significantly in the SelectiveMig scenario. 3) The migration time in the SnapMig

scenario is less sensitive to the number of running VMs, while that in the SelectiveMig

scenario soars as the number of running VMs increase. This further confirms that

SnapMig introduces negligible extra traffic to the source server.
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Chapter 5

IOFollow: Improving the VM Live Storage Migration by IO Following

5.1 Background and Motivation

In this section, we provide the necessary background information for the IOFollow

research, including Sequential IO property and threads model, which then helps mo-

tivate this research.

5.1.1 Sequential IO Property

Sequential IO property has been one of the most fundamental concepts in system

research area [86], mainly because of the performance disparity between Sequential

IOs and Random IOs in storage systems. Over the past few decades, the data transfer

bandwidth has increased a great deal, due to the more density of bits in the surface

of a disk drive. However, the costs of seek and rotation delay have reduced slowly,

since it’s much more challenging to speed up the mechanical movements of disk head

and the spinning speed of the platters. Therefore, the performance of Sequential IOs

is much better than that of Random IOs with frequent disk seeks and rotations [87].

The Sequential IO property is determined by many metrics from both Spatial and

Temporal dimensions [88, 89, 90, 91, 86]:

• Spatial Dimension:
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– Consecutive Addresses: the difference between the Logical Block Addresses

(LBA) of consecutive IO requests is within a predefined threshold. It could

be further classified as Strictly consecutive (no gap between the LBAs of con-

secutive IO requests) and Strided access (bounded gap between the LBAs of

consecutive IO requests).

– Consecutive Bytes Accessed: the size of data to read or write in an IO

request on average.

• Temporal Dimension:

– Interleaved Streams: the mixture of IO requests from multiple threads,

applications or VMs. The Sequential IO property for individual IO streams

may be affected by the interleaving with other IO streams. For instance, two

consecutive IO requests (request 1 and 2) with consecutive addresses from

stream A may experience poor IO performance, as a long disk head movement

involved during which the disk serves another IO request (request 3) from

stream B and the LBA of request 3 is far away from the LBA of either request

1 or 2.

– Inter-arrival Time: the time interval between consecutive IO requests. Once

there is a long waiting time between two IO requests, some other background

IO requests may be issued in between, which will influence the Sequential IO

property of the original IO stream.

The interleaving of multiple IO streams will not only affect the Sequential IO

property, but also decrease the IO performance significantly for each participating

stream. The experimental results from Xing et al. [9] indicate that a Random Write IO

stream is destructive to all other kinds of interleaving IO streams, such as Sequential
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Read / Write stream. The performance of the Random Write IO stream itself will

also be degraded significantly. More use cases of performance degradation for multiple

interleaving IO streams are presented in their work [9].

Given the nature of disk access characteristics and Sequential IO property of inter-

leaving IO streams, modern file systems, both local file systems [92, 93, 94, 95, 96] and

distributed file systems [97, 98], improve the IO performance by aggressively sending

sequential IO requests to underlying disk drives. For instance, in the Log-based File

system [92], a sufficient number of updates are buffered in memory before they are

sent to disks as a large sequential segment request, so that the disk throughput is

improved significantly compared with individual small random write requests. Read

requests are served by a similar manner, which will read a whole segment from disks

at once. In the Google File System(GFS) [98], the minimal size for each request is

64KB by default, so that high IO throughput in disks can be achieved with sequen-

tial IO requests. Unfortunately, file systems can only affect, but not determine the

Sequential IO property of IO streams that are produced by user applications them-

selves. Many optimization techniques have been invented to improve the Sequential

IO property by leveraging the semantic hints from the applications [99, 100].

5.1.2 Threads Model in Virtualized Systems

In the virtualized environment, the IO stream at the gate of the storage system is a

multi-layer interleaving of individual IO streams: First, an application-level IO stream

is produced with the interleaving of multiple thread-level IO streams within the same

application. Second, for each running VM, one VM-level IO stream is generated

with the interleaving of multiple application-level IO streams and the VM Operating

system IO stream. Finally, the interleaving of all VM-level IO streams and the hyper-

visor IO stream will become the final IO stream for the storage system. Considering
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all the metrics related to the Sequential IO property, VM-level IO Streams (named as

VM IOs) are mostly determined by user applications and guest Operating Systems.

Figure 5.1 shows the IO threads model of virtualization systems.

VM	IO	Thread	

Hypervisor	IO	Thread	

Migra4on	IO	Thread	

Before	VM	Live	Migra4on	 During	VM	Live	Migra4on	 A<er	VM	Live	Migra4on	

8	running	VMs	 4	migra4ng	VMs	+	4	co-loca4ng	VMs	 4	running	VMs	

Figure 5.1: The IO threads model of virtualized system during different phases of
VM live storage migration

When it comes to the VM live storage migration, one migration thread will be

assigned for each migrating VM, and it will migrate all the state information of the

migrating VM from the source server to the destination server. Most of the time, the

migration thread will read data of the VM’s virtual disk images from the beginning

to the end, and sync the updated data to the destination server as well. From the
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perspective of the Sequential IO property, the migration thread is a perfect sequential

workload, as it will read data within the space of the virtual disk images purely

sequentially and deserve good performance. Unfortunately, that’s not the reality.

It is the interleaving with other IO streams, including VM IOs and other migration

IOs, that undermines the Sequential IO property of migration threads. Disk head has

to seek and rotate to other places in order to serve other IO requests between two

consecutive read requests for the migration thread. After the serving of other IO

requests, disk head has to seek and rotate back to the neighbor of previous location,

in order to serve the next read request for the migration thread. Therefore, the IO

performance of all participating IO streams is degraded significantly and longer VM

migration time and low VM performance can not be avoided.

During the VM live storage migration, hypervisors are already overloaded because

of the additional bandwidth hungry migration threads. By further destroying the

Sequential IO property of migration threads, more weight will be put on the migration

engine, so that it’s much more challenging to migrate VMs fast and provide SLA for

the IO performance of all participating VMs.

5.1.3 Motivation

After carefully exam the state-of-the-art research works and the internal mechanism

of migration workflow, we observed that 1) Individual IO requests from the migrating

VM are generated by applications, so that we have limited capabilities to manipulate

the VM IO stream in order to improve the VM IO performance. 2) Only the total

migration time and the accuracy of the VM state transmission matters for migration

threads, while the individual request size, the starting address of each request or the

sequence of migration IO requests does not matter at all. Therefore, the migration

engine has the full flexibility to generate different kinds of migration IO requests,
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as long as all the state information of the migrating VM arrives in the destination

correctly within a reasonable migration time window.

Inspired by these observations, we propose our novel VM live storage migration

scheme, named IOFollow, that will improve both the VM IO performance and mi-

gration performance by generating and scheduling the migration sequence according

to the IO stream of VM requests. Essentially, we will select the next block migration

candidate based on the two criteria: 1) this data block has not been migrated to the

destination; 2) the address of this data block is close to the current access region

or the position of the disk head. In this way, we expect to get rid of the unneces-

sary disk head movements, so that the interleaved IO requests stream at the gate

of the storage system becomes more sequential. The performance of all the VM IO

threads, hypervisor IO thread and migration IO threads climbs significantly during

the VM live storage migration process. Further, we can selectively cache in memory

data blocks read by migration threads from the storage system, and use these data

to serve the predicted incoming VM IO requests, so that these VM IO requests will

not need to touch the storage system at all. Therefore, both the VM IO performance

and migration IO performance can be improved significantly.

At first glance, IOFollow, WAIO and Zheng’s work [12] all improve the VM live

storage migration performance by exploiting the workload characteristics within VMs,

but their fundamental ideas are different from each other. In the WAIO system, the

VM’s working set is identified and outsourced to another surrogate storage device

temporally, so that the VM thread is served by the surrogate device and the migra-

tion thread accesses the original storage device most of the time. The IO interference

between these two kinds of threads are solved by the isolation of these threads to

different storage devices. In Zheng’s work, the goal is to diminish the repeated trans-

missions of frequently updated data blocks by migrating the infrequently updated
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data blocks first. In other words, the VM threads will access the hot disk zones (the

VM’s working set) while the migration threads access the cold disk zones (infrequently

accessed data blocks). This scheme will reduce the total data transmission at the cost

of intensifying IO interference between VM threads and migration threads, as stor-

age devices have to seek back and forth to serve the interleaved IO requests both in

the hot zones and cold zones. Finally, IOFollow aims to improve the VM migration

performance by letting migration threads and VM threads cooperate with each other.

Moreover, IOFollow improves the cache hit ratio for VM threads by intelligently cache

data blocks in memory.

5.2 System Design and Implementation

In this section, we first outline the main design objectives of IOFollow. Then we

present the architecture overview of the IOFollow system, followed by a description

of migration blocks scheduling and IOFollow Block Cache Manager. The data con-

sistency issue of IOFollow is discussed at the end of this section.

5.2.1 Design Objectives

The design of IOFollow aims to achieve the following three objectives:

• Accelerating the VM live storage migration performance: - By removing most of the

unnecessary and time consuming disk seek operations, the VM live storage process

can be significantly accelerated.

• Improving the VM IO performance: - By improving the block cache hit ratio and

reducing disk seek operations, VM IO requests can be either served by the block

cache, or served by storage device faster because of the less disk seek operations.
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• Providing high flexibility: - IOFollow is quite flexible and can be tuned with different

parameters, such as cache replacement algorithms and migration chunk sizes, for

different applications.

5.2.2 IOFollow architecture overview

File based virtual disk images have been extensively adopted in the virtualized en-

vironment [64, 101]. From the VM’s perspective, the virtual disk image is the same

as the physical disk that supports all kinds of block layer’s API, such as ISCSI com-

mands. It’s compatible with main stream Guest Operating Systems, such as Windows

series and Linux series. From the storage system’s point of view, virtual disk images

are nothing but regular large files that can reside in most file systems. Therefore, all

the IO requests from user applications of the running VM become the IO requests

for the underlying large file that hold the virtual disk image. Similarly, the migration

thread will read this large file to migrate the VM’s storage state information. The

performance of virtual disk images is crucial for the running VM’s performance and

the migration agility. To improve the performance of virtual disk images, several

dedicated file/storage systems have been invented for virtual disk images only, such

as VMWare’s VMFS and Tintri VMStore [102, 103].

Figure 5.2 shows the architecture overview of the IOFollow system. IOFollow

is a simple module that can be incorporated into any modern hypervisors, and its

parameters, such as the migration chunk size, the block cache replacement algorithm,

can be tuned to different application workloads. For the VM live storage migration

jobs, only the server in the source side needs to incorporate the IOFollow module,

while the server in the destination side remains intact. IOFollow is a performance

boost layer that can be combined with conventional live migration approach, including

Dirty Block Tracking and IO Mirroring, to further improve both VM IO performance
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and migration performance. IOFollow can be applied to live migrate VMs between

servers within the same cluster or across different data center globally.

In the current virtualized systems, there are two level caches for each running VM:

guest disk write cache (within the VM), and host page cache (within the hypervisor).

According to the characteristics of different applications, users can choose to enable

or disable either of these two level caches or both, before the creation of a VM or

during the lifecycle of the running VM. In the normal execution period, only the

VM IO stream from the running applications and guest operating system visits these

two level cache systems, which could save a lot of storage access for applications or

guest operating system. When the live storage migration starts, an additional IO

hungry stream of IO requests from migration thread comes in, which will occupy

a large portion of dedicated host page cache for the migrating VM. As traditional

cache can not improve performance for streaming IO requests (e.g. online streaming

video applications), a better design of cache system is necessary for the overall system

performance.

IOFollow contains two major components: Migration Blocks Scheduler and Migration-

Aware Block Cache Manager. Migration Blocks Scheduler will analyze the VM IO

requests traffic, identify the current VM access zone, predict the later IO access region,

and then select the right data chunk to migrate. Once the data chunk is migrated

to the destination server, it will be handed over to the Migration-aware Block Cache

Manager. The selection of migration data chunks is based on two parts: 1. shorter

seek time of the storage system for the migration IO request; 2. this data block

fetched by the migration thread may serve the later VM IO requests with a higher

possibility. Migration-aware Block Cache Manager is to manage the memory resource

and intelligently cache data blocks for later VM IO requests. As the migration thread

only scan the virtual disk images once, it will not access the same data blocks for
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more than once, except the updated data blocks. However, these data blocks may

be accessed by VM IO requests. Therefore, by caching hot migration data blocks in

memory, many incoming VM IO requests can be served by Migration-aware Block

Cache Manager in memory directly. Once the block cache is full, a cache replacement

algorithm will take actions and cold data blocks will be evicted.

IOFollow Migration 
Engine 

Hardware Emulation 

Hypervisors in the 
destination 

network 

Hypervisors in the 
destination 

Virtual Machine 

 
IOFollow  

Block Cache 

Storage Devices 

Storage IO Queue 

Hypervisor in the Source 

VM	IO	Requests	

Migra0on	IO	Requests	

VM VM 

VM VM 

Figure 5.2: The architecture of IOFollow System

5.2.3 IOFollow Migration Blocks Scheduling

In the Migration Blocks Scheduling component, there are three decisions to make for

the VM live storage migration purpose:
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The first decision system administrators need to make is how much storage re-

source to allocate for the migration thread. Given the total storage resource remains

unchanged, the more resource migration thread gets, the less storage bandwidth VM

threads have. Essentially, this is a tradeoff between VM IO performance and migra-

tion performance, and it can be adjusted for different user cases or preferences.

After the storage resource allocation is determined, Migration Blocks Scheduling

will select the next chunk to read from the storage system, and this chunk will be

migrated to the destination server. Ideally, we prefer to data chunks satisfying the

following conditions: 1) this chunk has not been migrated to the destination server

yet. 2) the starting address of this data chunk is close to current VM IO access

region. 3) the incoming VM IO requests will read partial or full of this data chunk

with a high possibilities. In order to intelligently pick the right data chunk candidate,

the spatial and temporal locality of the VM IO stream needs to be analyzed online,

and the VM’s working set needs to be predicted by the Migration Blocks Scheduling

component.

The last decision is the migration chunk size. While both fixed and dynamic chunk

size are applicable for IOFollow system, the overall VM and migration performance

can be noticeably affected by the sizes of individual migration data chunks. This is an

old and common problem in many aspects of system design, which require different

techniques, such as online profiling and trace analysis, to tackle this problem. For

instance, in Zheng’s work, dynamic chunk size has been applied to reduce the number

of repeated data chunk migration. In our IOFollow system, we start from fixed chunk

size and evaluate its performance improvement. There is no doubt that IOFollow can

be combined with other chunk size determination mechanisms for different workloads.

The full algorithm of Migration Blocks Scheduling is presented in Algorithm 1.
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Algorithm 1 IOFollow Migration Blocks Scheduling

1: Initialization:
2: setMigVM: the set of concurrent migrating VMs
3: position: the disk head location of the storage system
4: function IOScheduling(setMigVM)
5: for vm1 in setMigVM do
6: serve IO requests for vm1
7: update position with IO requests’ addresses and sizes
8: vmrange = the block range of vm1 that needs to migrate
9: SelectChunk(vmrange, position)
10: end for
11: end function
12: function SelectChunk(vmrange, position)
13: if vmrange is not empty then
14: select the data chunk from vmrange whose address is close to position
15: remove this chunk from vmrange
16: issue the IO request for this data chunk
17: update the position to the current chunk address
18: else
19: Return Complete
20: end if
21: end function

5.2.4 Migration-aware Block Cache Manager(MABCM)

In the runtime, each running VM is assigned a number of memory pages by the

hypervisor, so that the VM can cache whatever it wants in memory, rather than

access the storage device every time. Normally these memory pages are classified as

guest write disk cache and host page cache [104], as described in previous section.

When it comes to the VM live storage migration, the whole virtual disk images will be

read from storage system to memory and then migrated to the destination server. A

straightforward question comes in: Do we need to cache these data blocks in memory

or not? Apparently, we can not cache all these data blocks in memory, as the memory

allocated to single running VM is usually much smaller than the size of the virtual

disk images. If we do not cache all these data blocks in memory at all, we end up
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wasting a lot of storage bandwidth. Considering the cost it takes to read in data

blocks from storage system to the memory and additional read requests will be issued

to the storage system by the VM thread, even if the target data blocks have already

been read in once by the migration thread. Therefore, caching a set of data chunks

with a higher access possibility by VM thread later in memory will improve the VM IO

performance by the reduction of storage accesses. The challenging is how to identify

these data chunks and how to evaluate and replace data chunks once the cache is full.

As we discussed in the previous section, the Migration Blocks Scheduling component

takes charge of the first challenge, while the MABCM solves the second one.

In MABCM, each entry is a data chunk of the virtual disk image in a specific

address, and there are a number of such entries in the MABCM. For each entry we

can evaluate its liveness value based on the answers to these questions: 1. Is this

block has already been migrated to the destination server or not? 2. How long

has this block been in the cache? 3. What’s the possibility that this data block

will be accessed by the VM IO threads in the near future? With such information,

MABCM can sort these entries and replace the entry with the least liveness value

when the cache is full. As such information is closely related to the spatial and

temporal locality of workloads, such cache management algorithm has to be tuned

to cater different applications. The more accurate locality we learn from workloads,

the better cache hit ratio and IO performance we can achieve. Compared with the

baseline approach, in which traditional two level cache management algorithm is

employed, our migration-aware cache management scheme can significantly improve

the VM live storage migration performance. The skeleton algorithm of Migration-

aware Block Cache Manager is introduced in Algorithm 2.
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Algorithm 2 Migration-aware Block Cache Manager

1: Initialization:
2: Apply memory pages from the hypervisor.
3: initalize metadata for the cache manager
4: Start to take requests from VM threads or migration threads
5: function ReadBlock(blockAddr)
6: if blockAddr is in cache then
7: return the block and update liveness info for this block
8: else
9: Read data block from storage, return data block to the client
10: Migrate this block to the destination if has not migrated yet
11: end if
12: end function
13: function WriteBlock(blockAddr, dataBuf)
14: if blockAddr is in cache then
15: update data block in memory and the liveness info
16: else
17: Read data blocks from storage, and update data in memory
18: Migration data blocks to destination if has not migrated yet
19: end if
20: end function
21: function PutBlock(blockAddr, dataBuf)
22: if cache is not full then
23: put data blocks to the cache and update the liveness info
24: else
25: evict data blocks with least liveness information
26: put data blocks to the cache.
27: end if
28: end function

5.2.5 Data consistency

System failures or migration crash can be caused by many factors, such as hard-

ware/software bugs, power failures, wrong operations or attacks from outside. Our

IOFollow system embraces these failures with the proactive design for system con-

sistency and robustness. Specifically, IOFollow stores the key data structures in a

non-volatile RAM (NVRAM), in order to prevent the sudden loss of power supply or

system crash. Since the size of these data structures is generally very small, it will
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not pose any significant cost for the system. For data in the blocks cache, we can

store them directly in DRAM, as there is always another copy in the storage system.

5.3 Performance Evaluation

In this section, we present the performance evaluation of the IOFollow scheme through

extensive trace-driven experiments.

5.3.1 Evaluation Methodology

As discussed before, both VM performance and migration performance are important

for the overall system performance. The migration performance is determined by

the network performance and storage performance, while the VM performance is

mainly determined by the storage system. In this evaluation, we focus on the storage

performance evaluation for both VM threads and migration threads.

Specifically, we create a virtual disk image in the disk drive, and replay the pub-

lished storage block level traces on top the virtual disk image. At the same time, we

generate the migration IO requests on top of the same virtual disk image, and the

migration IO requests will read in all the data blocks within this virtual disk images.

For both VM IO performance and migration performance, we use average IO response

time as the performance metrics. A shorter response time for the VM IO requests

means higher IO performance for the applications within the running VM. Also, a

shorter response time for the migration IO requests indicate faster VM live storage

migration. We compare our IOFollow scheme with the standard migration scheme

that will ignore the characteristics of the VM IO stream and migrate the virtual disk

images from beginning to the end.

In the experiments, we need to consider several parameters: First, we employ fix
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Table 5.1: Hardware Specifications in Our Experimental Platform

CPU Intel(R) Xeon(R) CPU, X3440@2.53GHz
MotherBoard Winbond Electronics 0V52N7

Memory 8GB, AMI CMX8GX3M2A1333C9
Hard Drives 1TB Seagate ST31000524AS, SATA

Network 1Gbps Ethernet

Trace Read Ratio IOPS Avg. Req. Size(KB)
Fin2 82.4% 125 2.2

WebSearch1 100% 113 15.1
WebSearch2 100% 100.3 14.9
WebSearch3 100% 63.52 15.2

Table 5.2: Trace characteristics

migration chunk size in the experiments, and the IOFollow system performance can

be further improved by more sophisticated dynamic chunk size migration approaches.

Second, we allocate the storage resource between VM threads and migration threads

with pre-determined ratio. For instance, 2:1 means storage system will serve every

two VM IO requests before perform one migration IO request, unless there is no VM

IO request waiting in the IO queue. This approach is simple but effective to achieve

a tradeoff between the VM performance and migration performance. Our IOFollow

system can also improve the VM live storage migration performance under other

storage resource allocation policies. Finally, we evaluate the IOFollow system under

different number of concurrent VM live storage migrations.

The experimental platform consists of a single server configured with an Intel

Xeon X3440 processor, 8GB DDR memory and two 1TB hard drives, 12.10 Ubuntu

system. The hardware information is described in details in Table 5.1.
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5.3.2 Workload Analysis and Trace Replay

In order to measure the performance improvement of IOFollow scheme, we replay

block level traces and collect the IO performance during the migration process. The

Storage Performance Council [66] has published several block level traces for research

purposes, and these traces have been widely employed to evaluate the storage system

performance [67, 68, 69]. The Financial2 trace is collected from OLTP applications in

a large financial institution and the WebSearch traces are collected from a web search

engine. The key characteristics of these traces are summarized in Table 5.2. In our

experiments, we implement a trace replay tool that will read trace files and generate

the migration IO requests according to the VM IO stream. Algorithm 3 introduces

the workflow of our trace replayer in details.

Algorithm 3 IOFollow Trace Replayer

1: Initialization:
2: vmSize: the logic size of the VM’s virtual disk images in total
3: chunkSize: the pre-determined chunk size for migration threads
4: storageRatio: serve storageRatio VM IO requests from vmIORequestsQ before

serve one migration request
5: vmIORequestsQ all the IO requests from the trace file in order
6: function Replaying(vmSize)
7: migChunkAddrSet: the starting address of each data chunk in migration
8: position: current position of storage system
9: while migChunkAddrSet is not empty do
10: serve storageRatio VM IO requests, and update position accordingly
11: record individual response time for each VM IO request
12: find the chunkAddr from migChunkAddrSet that is close to position
13: remove this chunkAddr from migChunkAddrSet
14: serve this migration request
15: update position, and record the IO response time for the migration request
16: end while
17: report average response time for VM IO requests
18: report average response time for migration requests
19: end function
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5.3.3 Result Analysis

In this scenario, there is only one VM migrating from the source to the destination.

The migration chunk size is 1MB and the storage resource allocation ratio is 2:1 be-

tween VM threads and migration threads. As indicated in figure 5.3, compared with

the standard migration scheme, the average IO response time for the migration thread

in our IOFollow scheme are reduced by 172−129
172

= 25.0%, 166−107
166

= 35.5%, 185−99
185

=

46.5% and 169−112
169

= 33.7% for different traces. The main reason is that, with the sim-

ple dynamic scheduling of migration block sequence, individual blocks are migrated

when the disk head is moving close to it, so that unnecessary seek and rotation oper-

ations are reduced noticeably for migration IO requests. Moreover, such scheduling

makes easier for the disk controller to apply internal optimizations, such as the re-

quests merge, in order to further improve the IO performance. Therefore the overall

migration IO performance is improved significantly.

The performance evaluation result for the VM IO thread is shown in figure 5.4.

We have the following two observations: 1. The average IO response time increases

by 60−35
35

= 71.4%, 52−22
22

= 136.4%, 68−25
25

= 172.0%, 62−37
37

= 67.6% for individual

storage traces. This clearly indicates that the VM IO performance is significantly

affected by the live storage migration jobs. Not only more IO requests generated by

the migration thread, but also the access locality of the applications is destroyed but

the new coming migration IO requests. For instance, two consecutive read requests

from the application become non-consecutive requests when a migration request is

served in between, and the address of the migration request is far from that of the

application requests. 2. Compared with the standard migration approach, the average

IO response time in our IOFollow scheme is decreased by 60−42
60

= 30.0%, 52−31
52

=

40.4%, 68−45
68

= 33.8% and 62−49
62

= 20.9% for different traces. The reason behind such
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Figure 5.3: The Migration Performance Comparison in Single VM Migration

improvement is that the interleaved IO stream at the gate of the storage system is

becoming more sequential in the IOFollow scheme than that in the standard scheme.

Therefore, the access locality of the applications can be reserved.

5.3.4 Sensitivity Studies

In order to investigate how the migration chunk size, the storage allocation policy and

the number of concurrent VM migrations affect the performance of IOFollow system,

we conduct a series of trace driven experiments. We report the normalized response

time of the IOFollow scheme based on that of the standard scheme under the same

experiment configuration.
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Figure 5.4: The VM Performance Comparison in Single VM Migration

5.3.4.1 Chunk Size

In this group of experiments, we compare the migration performance and VM perfor-

mance between IOFollow and standard migration approach, for the four traces under

different migration chunk sizes ranging from 128KB, to 256KB, 512KB, 1MB and

2MB. We normalize the IO response time in IOFollow based on that in the standard

migration. As figure 5.5 shows, compared with standard migration, IOFollow reduces

the average IO response time for the migration thread from 45% to 65%, for all the

traces under different chunk sizes. Meanwhile, IOFollow decreases the IO response

time for the VM thread from 70% to 88%, as indicated in figure 5.6. Therefore,

IOFollow can improve the VM live storage migration performance under different

migration chunk sizes.
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Figure 5.5: The Migration Performance Comparison in Single VM Migration among
Different Migration Chunk Size

5.3.4.2 Resource Allocation Policy

Before the start of the VM live storage migration, the policy of storage resource al-

location between VM IO threads and migration threads is determined by the system

administrators or automatically. In this group of experiments, we evaluate the per-

formance improvement of IOFollow scheme over standard migration under different

storage allocation ratio (VM IO resource:migration resource) from 1:1, to 2:1, 3:1

and 4:1. As figure 5.7 and 5.8 show, IOFollow scheme can improve the VM IO per-

formance by up to 74% and reduce the IO response time for the migration thread

by up to 50%. When many running VMs share a single server and the server can

not satisfy the requirement of storage IO bandwidths for each individual VMs, one

or more VMs will need to be live migrated to other servers. However, there is very
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Figure 5.6: The VM Performance Comparison in Single VM Migration among Dif-
ferent Migration Chunk Size

limited storage IO bandwidth available for the new migration threads, as the total

storage IO bandwidth is fixed. In this scenario, IOFollow is far more important for

the VM IO performance, as it introduce less bandwidth consumption for the storage

server, compared with the standard migration.

5.3.4.3 Concurrent VM Migrations

As discussed in previous sections, multiple concurrent VM live storage migration is

not uncommon in the current data center. In such scenarios, the source server will

undergo bigger pressure as multiple IO hungry migration streams are introduced and

the overall storage capacity for the source server remains the same as before. In

order to investigate how much can IOFollow scheme improve the VM live storage

migration performance compared with standard migration scheme in these scenarios,
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Figure 5.7: The Migration Performance Comparison in Single VM Migration among
Different Storage Allocation Policy

we conduct a series of experiments to evaluate such performance improvement under

different traces and different concurrent VM live storage migration.

As multiple migration threads are introduced, it’s better to schedule the VM

IO requests and migration IO request of a single VM as a unit, and then round

robin between multiple concurrent migrating VMs. The reason is that the targeting

addresses of VM IO requests and migration IO requests for a single VM are close

to each other, which will makes the final IO request stream in the disk control more

sequential. Therefore, in this set of experiments, we let the the storage system round-

robin among several migrating VMs and each time it will serve a number of VM IO

requests and a single migration request for a particular VM. We report the normalized

IO response time based on the standard migration approach. As indicated from

figure 5.9 and 5.10, IOFollow reduces the average IO response time by 55% for
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Figure 5.8: The VM Performance Comparison in Single VM Migration among Dif-
ferent Storage Allocation Policy

migration thread and 45% for VM IO thread, compared with standard migration. In

addition, as the number of the concurrent migrating VMs increase, the performance

improvement by IOFollow becomes more important.
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Figure 5.9: The Migration Performance Comparison among Multiple VMs Migration
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Figure 5.10: The VM Performance Comparison among Multiple VMs Migration
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Chapter 6

Directions for Future Research Work

So far, we have designed and implemented three novel live storage migration schemes

to improve the migration efficiency. Our trace driven evaluation results indicate that

all these schemes can significantly improve the overall migration performance. In this

section, we introduce two more ideas that also have the potential to improve the live

migration efficiency. The motivation and design of these two ideas are presented here,

while the system implementation and evaluation can be done in the future research

work.

6.1 Semantic-Aware Live-Block Migration

Intuitively, the key to the reduction of storage migration time is how to maximize the

effective migration bandwidth and minimize the amount of data transferring. File

systems provide us with such an opportunity to reduce the total data transmission

during the VM live storage migration process, as there is an abundance of free storage

space in storage systems. Based on the data collected from extensive data-center

benchmarking studies over the past 16 years, Mark Levin points out that on average

the disk storage utilization is 56.6% − 75.5% for UNIX environments, and 46.6% −

55.8% for Windows environments [105]. In a five-year study of file system metadata

from more than 60,000 Windows PCs in a large corporation [106], it clearly shows
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that the mean file system fullness has dropped from 49% in 2000 to 45% in 2004,

and the aggregate fullness of the population, computed as total consumed space

divided by total file system capacity, has been steady 41% overall all the sample years.

Furthermore, Symantec’s 2008 State of the Data Center Survey [107] found that data

centers utilize 50% of their storage capacity. The low utilization of storage systems

may stem in part from the fact that the cost of hard disk has been declining continually

relative to that of management, and storage capacity is always over-provisioned for

peak performance and the ever-increasing demand for storage capacity.

In the virtualized environment, virtual disk images emulate physical disks and

provide storage service for the running VMs. Inspired by the facts of ubiquitous

and rich free space in storage systems, we propose to leverage filesystem semantics

for less amount of data transferring. The basic idea of Semantic-Aware Live-Block

Migration (SALM) is to extract the liveness information of filesystem blocks of virtual

disks, and migrate the live blocks only. By doing so, it can significantly reduce the

storage migration time. SALM involves the extraction of block liveness information

and the process of live-block migration.

Block Liveness Extraction. By definition, block liveness is about whether

or not a filesystem block on the storage device is valid. In general, a file system

uses bitmap-like data structures in filesystem metadata (e.g., block bitmap and inode

bitmap in the Linux Ext2 file system) to keep track of allocated data and metadata

blocks. When a file system allocates data blocks for a new file, the corresponding bits

in the block bitmap will be set and the data blocks will be written. When deleting

a file, only the block bitmap will be updated. Since virtual disk image is unaware

of the block liveness, it may result in lack of storage intelligence and incapability of

semantic exploitation at the device level. If a disk can be made aware of the filesystem

block liveness at the block level, it is able to perform better data layout optimiza-
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tion [108], prefetch and caching, secure delete [109], intrusion detection [110], RAID

reconstruction [111], energy-efficient logging [112], SSD garbage collection [113].

To this end, explicit and implicit approaches to extract the block liveness infor-

mation within storage devices are proposed [114]. With the explicit approach, a

file system conveys the filesystem semantic information to the underlying storage de-

vice directly and explicitly. This approach requires modifications to the file system,

the standard block interface and storage device firmware. One typical example is the

TRIM command [115, 116]. TRIM has been proposed by the ATA standard Technical

Committee T13 to make SSDs aware of invalid/deleted data blocks more effectively,

and SSD can utilize the block liveness information to perform the garbage collection

operations more efficiently. Although the explicit approaches are able to easily con-

vey semantic information between the file systems and the underlying storage devices,

many existing computer systems cannot benefit from them due to the need to modify

file systems, device drivers as well as the block interface. On the contrary, implicit

approaches convey semantic information implicitly while keeping the standard block

interface unmodified. Sivathanu et al. propose SDS [117], a semantically-smart disk

system that can infer metadata structure fields of FFS-like file systems by perform-

ing a series of semantics extraction operations. SDS attempts to provide a generic

semantics extraction method with the help of a user-space assistant software tool.

In the context of live storage migration, Both explicit and implicit approaches

can be employed to extract the block liveness information from the file systems in

VMs. For explicit approaches, one possible method is to enhance virtual block device

drivers of VMM to support the TRIM command as modern SSD products do. It

enables VMM to have opportunities to interpret every TRIM command and obtain the

block-liveness information of file systems in the guest OS. Another possible method

is to develop and run a daemon program in the guest OS that can directly extract
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the filesystem semantics and communicate the block liveness information with VMM.

For implicit approaches, the key is to uncover the relationship between data blocks

and files, and the relationship among files within the storage device. These semantics

enable the block device to identify which file the specific data block belongs to, and,

further, which directory the specific file belongs to.

Live-Block Migration. With the block liveness information, the migration of

live blocks is easy. Instead of migrating every block of the file system in conven-

tional live storage migration approaches, our proposed live-block migration approach

transfers only valid file system blocks. When an operation of VM live storage mi-

gration is triggered, VMM initiates a migration process. The migration process then

requests the list of live blocks, and starts to transfer live blocks of the file system from

the source to the destination on the background until all the live blocks have been

transferred. Ideally live-block migration can halve the amount of data transferring

and the migration time. Live-block migration can work for any pre-copy, post-copy,

pre+post-copy live storage migration, or even offline storage migration approaches,

and it can also work with any virtual machine disk image formats (e.g., VMDK, VHD,

VDI, QCOW).

6.2 Redundancy/Similarity-Based Data Elimination

It is a well-accepted fact that there is rich data redundancy in storage datasets and

workloads. Data redundancy stems from a variety of sources. First, in virtualized

and consolidated storage environments, it is quite likely to run similar OSes and

software and thus create data redundancy across virtual disks. A very recent study

of the workloads obtained from a virtual machine running two web servers (“web”),

an email server (“mail”), and a file server (“homes”) shows that the unique writes
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account for 42.35%, 7.83%, and 66.37% of the total writes under the web, mail, and

homes workloads respectively [118, 119]. Second, version-control systems and the

versioning schemes embedded in development and office software promote duplication

of files for the sake of rollback and recovery. Another study of the workloads obtained

from 7 disks used in experimental systems for kernel development and 4 disks in

Office systems shows that the percentage of duplicate blocks ranges from 7.9% to

85.9%, and 5.8% − 28.1% of writes are duplicated [120]. Therefore, eliminating data

redundancy with data deduplication during live storage migration has been proposed

as an effective and efficient means to eliminating unnecessary data transferring of

duplicate data blocks [16, 121].

However, the existing deduplication-based VM live storage migration approaches

cannot work efficiently for the VMs under write-intensive workloads because data

blocks after updates may be unique of any data blocks. It is necessary to design a

new live storage migration approach that can not only eliminate the transferring of

duplicate data, but also lower the amount of transferring of dirty unique data blocks.

Fortunately, real-world workload analysis clearly show the ubiquitous existence of

data similarity: the data content of a block to write is always similar to the original

content of the same block. For example, Yang et al. [122] conducted experimental

studies, and found that usually only 5% − 20% bits inside a data block is changed

by an update operation under a wide set of typical workloads. Motivated by this

observation, they propose to log all previous versions of changed data blocks in time

sequence in a delta-compressed format to save storage overheads in their proposed

TRAP-Array architecture. Likewise, Wu and Xu [123] propose ∆FTL is to store

the compressed delta in SSD upon the write operation, instead of the new data for

the purpose of write reduction. More recently, VeloBit implements a content locality

caching technique in its SSD caching software product by combining content-based
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caching with high-speed delta compression.

Inspired by the observations and exploitation of ubiquitous data redundancy and

similarity in storage workloads and datasets, we propose the Redundancy/Similarity-

based Data Elimination (RSDE) scheme for the VM live storage migration of VMM

to eliminate unnecessary transferring of redundant and similar data with the judi-

cious combination of data deduplication and delta compression. Essentially, both

data deduplication and delta compression are to trade computation for the reduc-

tion of data transferring. Therefore, the latency of transferring any given data block

consists of the latencies of compressing the data content of the block at the source,

transferring the compressed data (fingerprint or delta), and uncompressing the data

at the destination. Higher compression ratio can accelerate the transfer process, but

at the cost of longer uncompressing time. It implies that it is necessary to strike a

good balance between compression ratio and uncompressing speed.

To this end, RSDE is designed to compress the original disk images of VMs to

transfer with the data deduplication module, while compressing the data blocks that

are being updated during the previous iteration of transferring compressed dirty data

blocks with delta compression module. In doing so, it can leverage the scalability

advantage of the data deduplication approaches to identify and eliminate duplicate

blocks along the space dimension, while easily capturing and compressing similar

blocks by delta compression along the time dimension. Moreover, in order to simplify

the data deduplication process and ensure high deduplication throughput, we deploys

fixed-size data chunking and fingerprint generation in the data deduplication module,

as the same as those used in deduplication-based primary storage systems [50, 124,

120]. In order to deliver high-throughput delta compression performance, RSDE, like

TRAP-array [122] and ∆FTL [123], generates the delta by XORing the new and old

versions of the same data blocks and compresses the delta using LZF [125]. In doing
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Figure 6.1: An illustrative example of the Redundancy/Similarity-Based Data Elim-
ination scheme.

so, it can save the computation and space overheads of maintaining and looking up

a global index structure to match a reference data block.

Figure 6.1 shows an illustrative example of the proposed RSDE scheme. On the

source node, RSDE integrates three important functional modules: Writable Snap-

shot, Dedupe Compressor and Delta Compressor. Writeable Snapshot is a dedicated

write logger for each VM disk image to accommodate all the writes of users that are

originally targeted at the corresponding VM disk image during storage migration.

The responsibilities of Dedupe Compressor include: (1) generating fingerprints(FPs)

using MD5/SHA1 hashing functions given a data block to transfer; (2) looking up the

fingerprint index and identify the uniqueness of the specific data block; (3) updating

the fingerprint index after returning the fingerprint value and reference count of the

data block to RSDE. The main function of Delta Compressor is to generate the com-

pressed delta between the new content and the old content of a data block given a

write operation. On the destination node, RSDE integrates two functional modules:

Dedupe Restorer and Delta Restorer. Dedupe Restorer is used to restore the data

content for a given fingerprint while Delta Restore is to restore the data block for a

given compressed delta.
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The workflow of VM live storage migration consists of two steps: Step 1 is to

migrate the gang of the original VM images and Step 2 is to iteratively migrate dirty

blocks until the amount of dirty blocks is less than a predefined threshold. On Step

1, as shown in Figure 6.1, VMM sends all the data blocks of VM images to Dedupe

Compressor (Step 1.a). Dedupe Compressor generates the corresponding fingerprints

and looks up the fingerprint table. If the data block to transfer is redundant, VMM

transfers the address and fingerprint of the block to the destination. If found unique,

VMM transfers the address, data content and fingerprint of the block to the destina-

tion (Step 1.b). When VMM at the destination receives the packet, it will check the

flag of the packet. If it contains a unique block, VMM directly writes the data content

to the target block and adds the fingerprint and target block address in its fingerprint

index. Otherwise, VMM will look up the fingerprint index and find the corresponding

block containing the data content it belongs to. VMM copies the content from the

found data to the target block and updates the fingerprint index accordingly (Step

1.c). To further improve performance, the copy operation in Step 1.c can be per-

formed in an asynchronous way: VMM updates and locks the fingerprint index as

usual, and appends the copy operation to a “TODO” list instead of copying immedi-

ately. VMM can perform all the copy operations on the “TODO” list periodically or

when the system is idle. This asynchronous IO optimization offers great opportunities

to coalesce and reorder IO requests and mitigate costly disk head seeks.

On Step 2, VMM is to iteratively transfer data blocks dirtied by users, logged in

Writable Snapshot, during the last iteration until the amount of dirty blocks is less

than a predefined threshold. In each iteration, VMM firstly sends the dirty blocks

in Writable Snapshot to Dedupe Compressor to determine whether it is a duplicate

or unique block (Step 2.a). If it is unique, VMM sends the content and address

of the block to Delta Compressor for delta compression (Step 2.b). The next step
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is to transfer the address and fingerprint of the dirty block for duplicate blocks, or

transfer the address and compressed delta of the dirty block for unique blocks (Step

2.c). When the packet is received at the destination, VMM will check the flag of the

package and route it to Dedupe Restorer or Delta Restorer accordingly. For unique

blocks, Delta Restorer will uncompress the delta, read the old content of the target

block, and generate the new content by XORing the old content and delta data.

Finally, the new content will be written to the target block (Step 2.d). The restoring

of duplicate blocks on Step 2.e is as the same as Step 1.c. When the amount of dirty

blocks is less than a threshold, VMM suspends the VMs at the source, performs one

iteration of Step 2, and resumes the VMs on the destination.
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Chapter 7

Conclusion

In this dissertation, we focus on the VM live storage migration performance and

identify the fundamental and serious IO interference problem. The insights and un-

derstanding obtained from this study motivate us to design and implement three

novel schemes to improve the VM live storage migration performance from different

and orthogonal perspectives, as follows:

7.1 WAIO: Workload-Aware IO Outsourcing Live Storage Migration

Conventional migration approaches, such as Dirty Block Tracking (DBT) and IO

Mirroring, do not address the problem of IO interference between VM IO requests

and Migration IO requests during the migration period, which degrades both the

VM IO performance and the migration performance. In this work, we propose a

Workload-Aware IO Outsourcing scheme, short for WAIO, to improve the VM live

storage migration efficiency. WAIO effectively outsources the VM’s working set to a

surrogate device during the migration and creates separate IO path for servicing the

VM IO requests. By outsourcing VM IO requests from the original storage to the

surrogate device, the VM live storage migration process can be performed on the orig-

inal storage, no longer interfered, while the outsourced VM IO requests are serviced

separately and thus much more quickly. Our lightweight prototype implementation
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of WAIO and extensive trace-driven experiments demonstrate that, compared with

the existing migration approach DBT, WAIO significantly improves the VM’s IO per-

formance during the migration process. Moreover, WAIO allows the hypervisor to

migrate a VM at a higher migration speed, without sacrificing the VM’s IO perfor-

mance.

7.2 SnapMig: Snapshot-based VM Live Storage Migration

Most existing VM migration approaches can not solve the IO interference problem,

as they induce significant extra storage and network traffic to the source server that

is already heavily loaded or scheduled for upgrade or repair. As a result, both the

VM performance perceived by the application/user and the migration performance

are degraded significantly. In this work, we aim to address this problem by proposing

a novel scheme, called SnapMig, to improve the VM live storage migration efficiency

and eliminate its performance impact on user applications at the source server by

effectively leveraging the existing VM snapshots in backup servers. By delegating

backup servers to transfer VM base image and snapshots to the destination server,

the source server only needs to migrate the latest state changes to the destination

server, leading to simultaneously improved VM performance, shortened migration

time and more efficient multiple-VM migration. Our lightweight prototype implemen-

tation of the SnapMig scheme demonstrates that, compared with the state-of-the-art

approaches, SnagMig can significantly reduce migration time and improve the source

server VM performance at the same time. Moreover, the performance improvement

provided by SnapMig becomes much more pronounced with multiple concurrent VM

migrations.
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7.3 IO Follow: Improving the VM live storage Migration by IO Following

Current VM live storage migration approaches ignore the Sequential IO property of

the interleaving IO streams at the gate of the storage server, by simply migrate the

VM’s virtual disk images sequentially, regardless of the concurrent VM IO streams

and other migration streams. Therefore, many unnecessary time consuming disk

head seek and rotation operations are introduced, which degrades both the VM IO

performance and migration performance. Inspired by these observations, we propose

our novel VM live storage migration scheme, named IOFollow, that will improve both

the VM IO performance and migration performance by generating and scheduling the

migration sequence according to the IO stream of VM requests. In this way, we expect

to get rid of the unnecessary disk head movements, and the overall VM live storage

migration performance can be improved significantly. Our trace-based experiments

indicate that our IOFollow system can improve the overall performance significantly.
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